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Abstract

Network applications such as Web browsing, video conferencing, instant messaging, file
sharing, and online gaming are becoming a necessity for more and more people. From a
user’s perspective, these network applications are used to accessservicesoffered byservice
providersthrough the Internet. Most of the services today arestatically integrated, i.e., at
design time, a service provider puts together aservice configurationconsisting of appropri-
ate resources and components. One major problem with such services is that they cannot
cope well with variations in user requirements and environment characteristics.

Self-configurationis an emerging approach for addressing this limitation. Aself-con-
figuring serviceis able to find an “optimal” service configuration automatically according
to the user requirements and environment characteristics. There have been many previous
research efforts in building such services. However, previous approaches either require a
provider to build a custom self-configuration solution, resulting in high development cost,
or they cannot take advantage of a provider’s service-specific self-configuration knowledge,
resulting in low effectiveness.

In this dissertation, we show that providers’ service-specific knowledge can be ab-
stracted from the lower-level self-configuration mechanisms such that service providers can
build effective self-configuring services using a general, shared self-configuration frame-
work. The use of a shared framework reduces the development cost, and being able to
take advantage of a provider’s service-specific knowledge increases the effectiveness of
self-configuration.

This dissertation describes how a provider can express its service-specific knowledge
in a recipeand how thesynthesizer, the core element of ourrecipe-based self-configuration
architecture, can perform global configuration and local adaptation accordingly. We also
present a network-sensitive service discovery infrastructure that provides efficient support
for component selection based on service-specific optimization criteria. We validate the
thesis by developing a prototype self-configuring video conferencing service using our
recipe-based approach. Our experimental results show that the abstraction and interpreta-
tion of the knowledge incurs negligible overhead, and our heuristic for complex component
selection problems is effective. A different set of experimental results demonstrates the
flexibility of the network-sensitive service discovery approach. Finally, simulation results
show that our adaptation mechanisms work as expected and do not introduce unreasonable
overhead.
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Chapter 1

Introduction

The use of network applications has evolved from academic/research activities to part of
everyone’s everyday life. Applications such as Web browsing, video conferencing, instant
messaging, file sharing, and online gaming are becoming a necessity for more and more
people. For example, the number of worldwide Web users is estimated at 454 million
as of September 2004 [98], and another estimate shows that the number of Internet hosts
has grown 290% since the year 2000 [73]. According to statistics from Valve [127], the
developer of the popular multiplayer online game Half-Life [64], players worldwide spend
a total of 3.4 billion minutes per month in Half-Life, surpassing the most popular TV show
in the U.S. at the time, Friends [47], which generates 2.9 billion viewer minutes per month.
As a result, improving the perceived performance for users of such network applications
has become an increasingly important research direction.

From a user’s perspective, these network applications are used to accessservicesoffered
by service providersthrough the Internet. For example, when a user uses a web browser
to access a web site, she is accessing a service provided by the entity that creates the
contents and sets up the web server. A Napster [94] client can be used to access the service
provided by Napster, who implements the applications and sets up the Napster servers.
In a departmental network, the network administrator can provide a video conferencing
service by setting up an H.323 Multipoint Control Unit (MCU) [74] in the network so that
three or more users can hold a video conference using H.323-compliant video conferencing
applications such as Microsoft NetMeeting [96]. A user who wants to play an online game
with others can use the game client to connect to the Battle.net gaming service [9] that
allows a player to find other players and provides game servers to host gaming sessions.

As can be seen from the examples, most of the existing services arestatically integrated,
i.e., atdesign time, a service provider puts together aservice configurationconsisting of
appropriate resources and components according to estimates of the user requirements and
environment characteristics. For example, the Battle.net gaming service provider needs
to estimate the number of simultaneous users and provision the bandwidth and server ca-
pacity accordingly. In the video conferencing example above, the network administrator
determines that only NetMeeting will be supported and deploys the MCU in the network.

With the proliferation of Internet usage, the network environment and user hardware/-

1
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software capabilities are rapidly becoming more and more heterogeneous. Therefore, ser-
vices are increasingly expected to be able to cope with variations of user requirements, re-
source availabilities, and other environment characteristics resulting from the heterogeneity
both atinvocation time, when a particular user request is received, andrun time, when the
service is being used by the user(s). However, statically integrated services cannot handle
such variations well. For example, if, at design time, the video conferencing service provi-
der did not anticipate users with handheld devices that have limited capacities, such users
will not be able to participate in conferencing sessions hosted by the service. Similarly, if
the Battle.net provider only placed servers in the U.S., European users may experience un-
acceptable performance. On the other hand, if a service provider configures the service for
the worst-case scenario, for example, deploying components that can handle all possible
requests, most components/resources may be idle most of the time, resulting in high and
unnecessary deployment cost.

To summarize, the main limitation of statically integrated services is that the service
configuration cannot be optimized according to a particular user request and the actual en-
vironment characteristics at invocation time, and similarly, the service configuration cannot
be changed to adapt to run-time variations of user requirements and environment charac-
teristics.

To address this limitation, one emerging approach is to addself-configurationcapa-
bilities to a service. The key feature of aself-configuring serviceis that it is able to find
an “optimal” service configuration automatically without the service provider’s interven-
tion. Note that “finding the optimal configuration” means that the self-configuring service
looks for the best configuration according to some service-specific criteria, i.e., it does not
mean the service is always able to find the absolute best configuration. At invocation time,
i.e., when a user request is received, the self-configuring service is able to automatically
compose an optimal service configuration using the appropriate components and resources
according to the particular user requirements and environment characteristics at that time.
Similarly, at run time, i.e., when the service configuration is serving the user(s), the ser-
vice is able to automatically modify the configuration to adapt to constantly changing user
requirements and environment characteristics. To illustrate the concept of self-configuring
services, let us look at several motivating examples.

1.1 Motivation

Figure 1.1 shows a self-configuring multiplayer online gaming service. Several players
want to play an online game together, and they invoke the service by sending a request to
the service, specifying the IP addresses of the participating players, the game they want
to play, and so on. To satisfy this particular request, the service can compose a service
configuration that consists of a single gaming server that supports the game requested by
the players. Since there may be many gaming servers that are eligible, the service will want
to select the server that can provide the best performance for the players in this particular
gaming session. Specifically, the service will select the server that minimizes the maximum
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Figure 1.1: A self-configuring multiplayer online gaming service.

Figure 1.2: A self-configuring video streaming service.

latency from the server to any player in the session. At run time, i.e., after the players start
using the composed service configuration, the service may need to modify the configuration
to adapt to changes in user requirements and the environment. For example, if one of the
players who originally is using a desktop computer wants to switch to a handheld console,
the service can insert a computation proxy for the player to compensate for the loss of
computation power. If the gaming server becomes overloaded, the service may decrease the
synchronization resolution to reduce the load, potentially at the expense of player-perceived
quality.

The second example is the self-configuring video streaming service in Figure 1.2. At
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Figure 1.3: A self-configuring video conferencing service.

invocation time, if a user requests for a low-bitrate MPEG-4 video stream, the video stream-
ing service can satisfy the request by composing a service configuration that consists of a
high-bitrate MPEG-2 streaming server and an MPEG-2-to-MPEG-4 transcoder. Further-
more, in order to reduce the network resource usage, the service can select a server and a
transcoder such that the bitrate-weighted network distance between the server and the user
is minimized. At run time, if the transcoder becomes overloaded, the service can either
decrease the video codec quality to reduce the load or replace the transcoder with another
one that has a higher capacity.

Finally, Figure 1.3 depicts a self-configuring video conferencing service. Five users
want to hold a video conference: P1 and P2 have MBone conferencing applications vic/-
SDR (VIC), P3 and P4 use NetMeeting (NM), and P5 uses a receive-only handheld device
(HH). After receiving the request, the service determines that to support this conferenc-
ing session, a video conferencing gateway (VGW) is needed for protocol translation and
video forwarding between VIC and NM, and a handheld proxy (HHP) is needed to join
the conference for P5. In addition, since IP multicast is not available between P1 and P2,
an End System Multicast (ESM) [23] overlay consisting of three ESM proxies (ESMPs) is
needed to enable wide-area multicast among P1, P2, VGW, and HHP. To select all these
components, the service tries to minimize the shown objective function in order to reduce
the network resource usage. After the conferencing session is started, the service monitors
the load on the different components, and if a component is overloaded, the service will try
to reduce the load or replace the component if necessary.

These examples show that self-configuring services can be built to dynamically com-
pose and change the service configuration at invocation time and run time to accommodate
the user requirements and environment characteristics. Of course, there are a broad range
of services to which self-configuration can be applied. Therefore, previous studies have
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looked at services that are different from the above examples. In this dissertation, we fo-
cus on self-configuring services that arecomponent-based, session-oriented, andnetwork-
sensitive. These properties can be seen in the example services illustrated above, and below
is a summary of these properties.

• Component-based: In this dissertation, we want to support services that can config-
ure itself not only at theparameter levelbut also at thecomponent level, for example,
in addition to changing the run-time parameters (e.g., bit rate) of a component, a ser-
vice should also be able to insert a new component into the configuration or remove
an old one. This allows much richer services to be built than what are possible in pre-
vious studies that focus on parameter-level self-configuration, for example, adjusting
the allocation of limited resources among different service components, changing the
service fidelity to cope with network problems, and so on.

• Session-oriented: We focus on services where each user request is for asessionthat
will last for a relatively long time, e.g., on the order of minutes or hours. This is
different from services that use a request-response model, i.e., each user request is
seeking a response from the service, and thus the lifetime of a “service configuration”
is likely on the order of milliseconds or seconds. In particular, session-oriented ser-
vices raise several interesting issues. At invocation time, a session-oriented service
can afford to spend more computation power and time to find an optimal configura-
tion for the user request since such a configuration will be used for the entire session.
Secondly, as a session can last for a long time, the user requirements and environ-
ment characteristics are likely to change during the session. Therefore, mechanisms
are needed to adapt the configuration to such changes at run time. Finally, such run-
time adaptations should try to avoid dramatic changes that would disrupt the on-going
session.

• Network-sensitive: We target services that are sensitive to network performance,
i.e., such a service not only needs to find a feasible configuration that can provide the
required functionalities, but it also needs to optimize the configuration to improve
the network performance. Specifically, the selection of the needed components in the
configuration needs to be based on the network performance of the candidates for the
components.

In this dissertation, we provide a framework for service providers to build self-confi-
guring services with the above properties. From the discussions above, we can see that
building a self-configuring service involves a broad range of expertise such as service se-
mantics, component discovery, optimization, and run-time adaptation, and therefore, it can
be a complex task for the service provider. The goal of this dissertation is to enable service
providers to buildeffectiveself-configuring services withlow development cost. Therefore,
we are concerned with the following two issues.

• Effectiveness: The effectiveness of a self-configuring service has two aspects. (1)
How optimal is the resulting configuration composed by the self-configuring service?
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Figure 1.4: Service-specific approach.

(Note that the optimality is measured against some service-specific criteria.) (2) How
efficient is the process of finding the optimal service configuration?

• Development cost: The cost of building a self-configuring service is measured by,
for example, what expertise the provider needs to build the service, the number of
lines of code the provider needs to implement, and so on.

Before presenting our solution, let us first look at previous approaches for building self-
configuring services.

1.2 Previous approaches

Previously, two approaches have been proposed for building self-configuring services.
However, each only addresses one of the issues above at the expense of the other. We
now briefly describe these two approaches. (A more detailed discussion of related work is
in Section 1.5.)

• Service-specific approach: To build a self-configuring service, a service provider
can implement a service-specific self-configuration module that composes a service
configuration for each user request. An example of this approach is shown in Fig-
ure 1.4: to build a self-configuring video conferencing service, a provider can develop
a self-configuration module that is able to handle different types of users in a video
conferencing session, e.g., using a VGW if there are both VIC users and NM users.

Using this approach, the provider has complete control over how self-configuration is
performed. Therefore, this approach can achieve highly effective self-configuration.
However, the problem with this approach is that, as we mentioned above, self-con-
figuration involves a broad range of expertise. Having a service provider implement
its own complete self-configuration solution requires the provider to acquire the ex-
pertise in all the areas and to spend the extra efforts in integrating them all together.
Therefore, this approach requires high development cost.
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Figure 1.5: Generic approach.

• Generic approach: In contrast to the service-specific approach, some researchers
have proposed a generic approach usingtype-based service composition. In such
an approach, a generic self-configuration framework is developed and can be shared
by providers of different services. All service components have typed input/output
interfaces, and a user request asks for an input interface or a set of interfaces. By
matching the input/output interfaces, the generic framework can find a composition
of components that provides the requested interface(s). Figure 1.5 shows an exam-
ple. Suppose a user requests MPEG-4-in from a video streaming service. A generic
self-configuration framework can automatically determine that this request can be
satisfied by two different combinations of the components, for example, a combina-
tion of a streaming server with MPEG-2-out and a video transcoder with MPEG-2-in
and MPEG-4-out.

Since the framework is shared by all services, this approach greatly reduces the de-
velopment cost. However, the effectiveness of this approach is limited by the fact that
a provider cannot control most aspects of self-configuration. For example, even if a
video streaming service provider knows that the particular combination of server and
transcoder should be used, the generic framework has to look at many different and
potentially irrelevant types of components, resulting in a large search space of feasi-
ble configurations. Furthermore, when selecting each of the needed components, the
generic framework uses a generic selection criteria instead of the service provider’s
service-specific metrics, resulting in sub-optimal configurations.

1.3 Challenges

The key difference between the above two approaches is how much they can take advan-
tage of a provider’sservice-specific knowledge. In the service-specific approach, a service
provider can hard-wire the service-specific knowledge into the self-configuration module,
but additional expertise and efforts are required to integrate or implement the lower-level
mechanisms, resulting in high development cost. In the generic approach, the generic
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framework can be reused by different services, but self-configuration is performed using
only the generic knowledge embedded in the framework, resulting in limited effectiveness.
Therefore, in order to achieve our goal of both high effectiveness and low cost, we need
a solution that can not only make use of providers’ service-specific knowledge but also
provide a generic, shared framework. This presents the following two major challenges.

• Abstracting service-specific knowledge from low-level mechanisms: To make use of
the service-specific knowledge with a generic framework, the first necessary step is to
separate the service-specific knowledge from the low-level self-configuration mech-
anisms. For example, the knowledge that “a conferencing gateway is needed” is
service-specific, but how to format a service discovery query is not. We need to iden-
tify the different aspects of service-specific knowledge that need to be abstracted, and
we need to define a representation that is sufficiently expressive for service providers
to express their service-specific knowledge.

• Designing a general framework that supports service-specific self-configuration op-
erations: Given the abstracted service-specific knowledge, we then need a general
framework that can interpret the knowledge representation to perform self-configu-
ration in a service-specific way. For example, given the needed component types
and the service-specific criteria for component selection, the framework needs for-
mulate and solve an optimization problem to select the actual components in the
composed configuration. We need to develop mechanisms for interpreting the ab-
stracted service-specific knowledge, techniques for formulating optimization prob-
lems, algorithms for solving such problems, infrastructures that provide low-level
functionalities such as service discovery and network measurement, and so on.

1.4 Proposed approach

In this dissertation, we show that service-specific knowledge can be abstracted from the
lower-level self-configuration mechanisms such that service providers can build effective
self-configuring services using a general, shared self-configuration framework.

To achieve this, we propose arecipe-based self-configurationarchitecture. Figure 1.6
shows a high-level view of this architecture. The key elements of our architecture are the
service recipe, which expresses a service provider’s service-specific knowledge, and the
synthesizer, which performs self-configuration. A service provider transforms its service-
specific knowledge into a service recipe and submits the recipe to the synthesizer to create
a self-configuring service. The synthesizer has two tasks. At invocation time, the synthe-
sizer uses the knowledge in the recipe to performglobal configuration, i.e., it automatically
finds the necessary components to compose an optimal global configuration according to
the specified user requirements and the environment characteristics. At run time, the syn-
thesizer uses the knowledge to performlocal adaptation, i.e., it monitors the configuration
and makes incremental changes to the configuration if necessary in order to adapt to user or
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Figure 1.6: A high-level view of the recipe-based self-configuration architecture.

environment changes. The low-level functionalities required for global configuration and
local adaptation are provided by thesupporting infrastructures.

Unlike the service-specific approach, our architecture provides generic self-configura-
tion functionalities that can be reused by providers of different services. In contrast to
the generic approach, service providers can express their service-specific knowledge such
as configuration heuristics and optimization criteria in the recipes to customize how self-
configuration is performed. In other words, our approach achieves effective self-configura-
tion through the use of providers’ service-specific knowledge, and furthermore, it does not
require providers to worry about the lower-level mechanisms, resulting in lower develop-
ment cost.

1.5 Related work

Enabling technologies. A self-configuring service requires a broad range of supporting
infrastructures and technologies. Service discovery infrastructures such as Service Lo-
cation Protocol (SLP) [61], Service Discovery Service (SDS) [27], and Jini [79] allows
the discovery of a particular component based on its functional attributes, e.g., finding
video transcoders that support a particular video codec. Middleware infrastructures such
as Globus [42] and the Open Grid Services Architecture (OGSA) [43] provide mechanisms
for dynamic discovery, monitoring, and deployment of distributed resources, e.g., computa-
tion and storage servers. Measurement infrastructures such as Global Network Positioning
(GNP) [97] and Remos [59] can provide performance information such as latency, avail-
able bandwidth, and topology, which are needed for selecting the optimal resources and
components. Distributed component framework such as the Common Object Request Bro-
ker Architecture (CORBA) [101], Distributed Component Object Model (DCOM) [32],
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and JavaBeans [77] and Web service technologies such as Simple Object Access Protocol
(SOAP) [119] and Web Services Description Language (WSDL) [133] simplify the devel-
opment of and interoperation between components.

To realize self-configuring services, the key issue is how to automate the process of
using the above technologies to find an optimal configuration consisting of distributed
components and resources according to user requirements and environment characteris-
tics. Next, we discuss the previousservice-specificandgenericapproaches for building
self-configuring services.

Service-specific approach. One approach to building a self-configuring service is to de-
velop a specialized framework that can perform self-configuration for a particular service
or a particular type of services. In other words, a service provider’s self-configuration logic
is hard-coded into the service. For example, in [26, 87], a resource allocation framework
is proposed that is able to allocate distributed resources dynamically for resource-intensive
Grid applications. Gu and Nahrstedt propose a service aggregation model that uses shortest
path algorithms to select components of a given service path in peer-to-peer Grids [60].
The focus in [108] is on component selection and resource allocation for resource-aware
multi-fidelity applications. A framework is proposed in [88] to address the issue of re-
source selection for path-based resource-intensive applications. As discussed earlier, these
service-specific frameworks can make effective use of service-specific knowledge, but the
required development cost is higher.

Generic approach. In contrast to the service-specific approach, some previous efforts
adopt a generic approach that can support different services usingtype-based service com-
position. In other words, all components have typed input/output (or requires/provides)
interfaces, and a user request is also represented by the requested input type. There-
fore, a generic self-configuration module can look for combinations of components that
result in an output type matching the user-requested type. Some of these previous efforts,
e.g., [57, 115, 48], focus on a “path-based” model, i.e., a service configuration is repre-
sented by a series of components that form a “service path” from a server to the user. Others
support a more general graph-based model, e.g., [109, 75]. As discussed earlier, using such
a generic framework to build self-configuring services can reduce the development cost, but
the effectiveness is limited since it does not take advantage of service-specific knowledge.

1.6 Contributions

The main contributions of this dissertation are as follows.

• Recipe-based self-configuration architecture.We identify service-specific knowl-
edge as the key to the effectiveness of self-configuration, and we propose a new
architecture that abstracts the service-specific aspects of self-configuration from the
lower-level mechanisms. This recipe-based self-configuration architecture is general
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and supports different services, and it allows service providers to customize both
invocation-time and run-time self-configuration using their service-specific knowl-
edge with low development cost.

• Network-Sensitive Service Discovery infrastructure.We observe that component
selection based on service-specific network performance criteria is the fundamental
operation of self-configuration, which is not supported by traditional service discov-
ery solutions. We propose a simple API that can be used for such service-specific
operations without knowledge of the lower-level mechanisms. We design and im-
plement the network-sensitive service discovery infrastructure, which combines the
functionalities of service discovery and network measurement to support this API.
We have presented results for this part of the thesis research at USITS ’03 [69] and
in the Journal of Grid Computing [70].

• Synthesizer and recipe representation.We divide the process of composing a com-
plete service configuration into two steps: abstract mapping, i.e., determining what
types of components are needed, and physical mapping, i.e., selecting the actual
components. We design APIs that can be used by service providers to specify their
service-specific knowledge, both for abstract and physical mappings, in the form of a
recipe. We develop the synthesizer that composes a service configuration for a given
user request according to the knowledge embedded in such a recipe. The recipe rep-
resentation and synthesizer have been presented at HPDC-13 [71].

• Local adaptation support. In order to adapt to constantly changing user require-
ments and environment characteristics, self-configuration is necessary at both invo-
cation time and run time. At run time, simply composing a brand new service confi-
guration to replace the existing one may cause service disruption and incur high cost;
therefore, local adaptations may be more effective in such cases.

We identify three important aspects of a provider’s service-specific adaptation knowl-
edge:adaptation strategiesspecify when and how to adapt,customization knowledge
specifies how to customize the strategies according to the user requirements and en-
vironment, andcoordination knowledgespecifies how to coordinate the strategies to
avoid conflicts. We extend the recipe APIs and the synthesizer to allow a provider to
specify such adaptation knowledge in a recipe. We design and implement coordina-
tion mechanisms that detect and resolve conflicts between strategies according to the
coordination knowledge. Preliminary results for this part of the thesis research have
been presented at WICSA ’04 [20].

1.7 Evaluation methodology

From the previous section, we can see that our contributions have many different aspects.
Some are quantitative such as the performance of network-sensitive service discovery or
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the efficiency of the synthesizer in finding configurations. Some are qualitative such as the
feasibility of the architecture or the expressiveness of the recipe representation. Therefore,
we evaluate different parts of our work using different methods.

We validate the thesis by developing a prototype self-configuring video conferencing
service using our recipe-based approach. We assume that existing component technologies
and middleware infrastructures can be leveraged to handle component interoperation and
deployment issues. Therefore, we focus on how the service-specific knowledge can be rep-
resented in a recipe and how the synthesizer uses a recipe to perform self-configuration.
We will show that the service-specific knowledge for the video conferencing service can
be captured using our recipe representation, and we will present experimental results that
demonstrate that the synthesizer can interpret the recipe to generate an optimal global con-
figuration with minimum overhead. We also demonstrate that our heuristic for the global
optimization problem is effective and efficient for finding optimal configurations for the
video conferencing service.

In addition, we evaluate the flexibility of the NSSD approach using a simulated mul-
tiplayer online gaming service deployed on the PlanetLab [106] wide area testbed. We
demonstrate the expressiveness of our recipe representation using a video streaming ser-
vice and an interactive search service as examples. Finally, we use the video conferencing
service and a massively multiplayer online gaming service to demonstrate the flexibility of
our local adaptation support in capturing the three aspects of the service-specific adaptation
knowledge, and we perform simulations using the massively multiplayer online game sce-
nario to show that our adaptation coordination mechanisms do not introduce unreasonable
overhead.

1.8 Road map

The remainder of this dissertation is organized as follows. In Chapter 2, we present an
overview of the recipe-based self-configuration architecture. We identify the important
aspects of service-specific knowledge, describe the architectural components, and discuss
how a self-configuring service is built and its operations.

In Chapter 3, we describe the network-sensitive service discovery (NSSD) infrastruc-
ture that supports component selection based on service-specific network performance cri-
teria. We present the NSSD API and the design and implementation of a prototype NSSD
infrastructure. We use both simulations and Internet-testbed experiments to demonstrate the
flexibility and effectiveness of NSSD in supporting component selection based on service-
specific optimization criteria. We further discuss how to support service-specific global
optimization in coordinated component selection.

In Chapter 4, we present the recipe representation that allows service providers to ex-
press their service-specific self-configuration knowledge. We describe the design and im-
plementation of the synthesizer and how it uses a recipe to compose service configurations.
We also discuss the trade-off between cost and optimality when solving the global opti-
mization problem of physical mapping and how a provider can specify a service-specific
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trade-off.
In Chapter 5, we discuss how to support service-specific local adaptations at run time.

We present extensions to the recipe APIs and the synthesizer that allow providers to specify
their service-specific adaptation knowledge. We use simulations to demonstrate the flexi-
bility of our customization mechanisms and also to show that our coordination mechanisms
behave as expected and do not introduce unreasonable overhead.

Finally, we summarize the dissertation in Chapter 6 and discuss future research direc-
tions.
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Chapter 2

Recipe-based Self-configuration
Architecture

In this chapter, we present our recipe-based self-configuration architecture. In Section 2.1,
we first outline a general architecture for self-configuring services and describe the re-
quired architectural elements. The core element of the architecture is the self-configuration
module, which requires both service-specific and generic knowledge to perform self-con-
figuration. We then discuss two previous approaches for building self-configuring services
in Section 2.2. The two approaches differ in how they handle the two types of knowledge,
and they present a trade-off between effectiveness and development cost. To achieve both
high effectiveness and low cost, we present the recipe-based self-configuration approach in
Section 2.3. The basic idea is to abstract the service-specific self-configuration knowledge
from the generic infrastructure knowledge such that the service-specific knowledge can
be used with a general, shared self-configuration framework. In Section 2.4, we present
our recipe-based self-configuration architecture and describe the key pieces required to
support recipe-based self-configuration, namely, the synthesizer and recipe representation,
the Network-Sensitive Service Discovery infrastructure, and the local adaptation support.
These elements are the focus of this dissertation. Finally, we discuss the scope of our work
in Section 2.5 and look at related work in Section 2.6.

2.1 A general architecture for self-configuring services

The goal of this dissertation is to provide a framework for service providers to build self-
configuring services, and the first step towards this goal is to identify what functionality is
required for a self-configuring service. In this section, we identify the required architectural
elements of a self-configuring service.

Consider the self-configuring video conferencing service example from the previous
chapter (Figure 1.3). For this service to work, clearly components such as the VGW, HHP,
and ESMP must exist in the network. The service must also be able to find the suitable
components, e.g., when a VGW is needed, the service needs to be able to get a list of

15
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Figure 2.1: Required architectural elements for self-configuring services.

available VGWs. The service also needs mechanisms to obtain network performance in-
formation in order to select the best candidate using some criteria, e.g., selecting the VGW
that has the lowest latency to NM clients. To actually use the selected components, the
service needs to deal with deployment issues such as authentication, billing, remote execu-
tion, management, etc. Of course, the deployed components must be able to interoperate
with one another. At run time, i.e., after the configuration is composed, the service needs to
continue monitoring the various components and connections and modify the configuration
to adapt to changes in user requirements and environment. For example, the service may
need to adjust the video quality to control the load on the VGW or replace the existing
VGW with a new one in case of a failure.

From the example above, we sketch out in Figure 2.1 the required architectural elements
for self-configuration services, and we now describe these elements.

• Component technologies: For each request, a self-configuring service composes
and maintains a service configuration consisting of distributed components, for ex-
ample, specialized servers such as a VGW or a transcoder, generic resources such as
a computation server or a storage server, and so on. Therefore, the components must
be implemented using technologies that allow them to be reusable and interoperable.
For example, components can export well-defined interfaces so that their functional-
ities can be accessed and combined easily even if they are implemented by different
sources. Most of the required functionalities for reusability and interoperability can
be provided by existing technologies.

• Service discovery infrastructure: The second requirement for a self-configuring
service is that it must be able to find the components it needs. A component provides
a specialized “service” such as transcoding or a generic service such as CPU cycles.
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Therefore, finding the needed components can be formulated as the more general
service discovery problem. There have been many previous studies addressing this
problem, and they mostly vary in the flexibility of service description and in system
properties such as scalability.

• Network measurement infrastructure: The network measurement infrastructure
serves two roles. First, it provides network performance information that is nec-
essary for a self-configuring service to select one of the candidates for a needed
component. Secondly, it allows a self-configuring service to monitor network prop-
erties in an existing configuration to detect potential performance problems. These
functionalities can be provided by many existing infrastructures and technologies.
Although we only discuss the network measurement infrastructure here, we must
note that component properties such as load, computation power, and so on are also
needed by self-configuring services. We do not discuss a separate infrastructure for
measuring and monitoring component properties since components implemented us-
ing new component technologies will likely provide a control interface for obtaining
such information.

• Deployment infrastructure: The deployment infrastructure encompasses a broad
range of functionalities required by a self-configuring service. For example, after a
component is located, a self-configuring service will need mechanisms to reserve the
component (or the resource needed to run the component) and to remotely initialize
or execute the component. It may also need to deploy components across adminis-
trative domains, which would require authentication, billing, and other mechanisms.
Many existing infrastructures and frameworks can be leveraged to provide these de-
ployment functionalities.

• Self-configuration module: Finally, the self-configuration module is the core ele-
ment of a self-configuring service. It uses the functionalities provided by the above
elements to perform the following two self-configuration tasks.

– Global configuration: At invocation time, the module composes an optimal
global configuration for a request according to the particular user requirements
and environment.

– Local adaptation: At run time, the module make incremental changes to the
service configuration in order to adapt to changes in user requirements or en-
vironment. Local adaptation is necessary because global configuration is likely
expensive in terms of required computation power and time, and furthermore,
switching to a new global configuration at run time may be disruptive to the
users.

We observe that in order for the self-configuration module to perform global configura-
tion and local adaptation, it requires the following two types of knowledge.
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• Service-specific self-configuration knowledge: To automatically perform self-confi-
guration, the module needs to know what configuration is “best” for a given set of
user requirements and environment characteristics. This knowledge includes, for
example, what types of components are needed in the global configuration, what op-
timization criteria should be used for selecting the best among multiple candidates
for a particular component, when local adaptation should be performed, what incre-
mental changes are needed for a particular adaptation, and so on. Such knowledge is
service-specific since, for example, even for the same service, the best configuration
for one provider may not be the best for a different provider.

• Generic infrastructure knowledge: In addition to the service-specific knowledge,
the self-configuration module also needs to know how to use the other four ele-
ments above to actually carry out the self-configuration tasks. For example, if the
service-specific knowledge specifies that “a VGW with low latency to a user is
needed”, then the module needs to know which service discovery infrastructure can
provide information of available VGWs, which network measurement infrastructure
can provide the necessary latency information, and also how to construct queries for
these infrastructures to obtain the needed information. Such knowledge is generic
since the underlying infrastructures and frameworks can be shared by different ser-
vices/providers. For example, a latency measurement infrastructure can provide la-
tency information to different services.

Previous solutions for building self-configuring services mostly differ in how they real-
ize the self-configuration module or, more specifically, how they handle the two types of
knowledge required by the self-configuration module. In the next section, we examine the
two main approaches adopted by previous solutions.

2.2 Self-configuring services: previous approaches

Previous efforts in building self-configuring services can be categorized into two main ap-
proaches. The first one is theservice-specificapproach where a service provider builds
a service-specific self-configuration module that integrates both the provider’s service-
specific self-configuration knowledge and the necessary generic infrastructures. As an ex-
ample, the self-configuration module of a video streaming service may have the following
pseudo-code segment.

• If user input format is MPEG4, do the following.

1. Two components are required, one with type MPEG2-Server and the other with
type MPEG24-Transcoder.

2. Use infrastructure I1 to find candidates for MPEG2-Server and MPEG24-Trans-
coder.

3. Use infrastructure I2 to obtain latency information for all candidates.
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4. Select a candidate for each component using the latency information such that
the bitrate-weighted sum of latencies is minimized.

In other words, using the service-specific approach, the service provider needs to have
not only the service-specific self-configuration knowledge (e.g., “use MPEG2-Server and
MPEG24-Transcoder” and “optimize bitrate-weighted sum of latencies”) but also the ge-
neric infrastructure knowledge (e.g., “I1 and I2 are needed” and how to access them).
The provider then hard-wires the two types of knowledge into the service-specific self-
configuration module.

Since in the service-specific approach the provider has complete control over how self-
configuration is performed, this approach can achieve high effectiveness. However, this
approach requires a provider to have sufficient knowledge about the generic infrastructures
that involves many areas, and it also requires extra efforts to integrate the generic infras-
tructures and technologies. Furthermore, since the provider’s knowledge is hard-wired into
the service-specific module, it will be difficult to reuse one provider’s efforts for a different
service. Therefore, the downside of this approach is the resulting high development cost.

Another approach for building self-configuring services is thegenericapproach. In this
approach, a service provider builds a self-configuring service by leveraging a generic self-
configuration framework that can be shared by different services. Many previous studies
have developed such generic self-configuration frameworks, and most of them are based
on “type-based service composition”. The basic idea of type-based composition is that
components have well-defined input/output types, and a user request specifies the required
input type. Therefore, without any service-specific efforts, a generic self-configuration
module can automatically find feasible configurations that can satisfy a particular request
by looking for combinations of components that result in the requested type. Such a generic
self-configuration module may have the following pseudo-code segment.

1. Find the setC = {c | c =< t1, . . . , tn > such that (t1.in = null), (∀1 ≤ j ≤ (n−
1), t j .out = t j+1.in), and (tn.out = user.in)}. I.e., C is the set of feasible configu-
rations.

2. Select the configurationc from C that has the lowest number of component.

3. Use infrastructures I3 and I4 to find a candidate for each component type inc so that
the generic optimization criteriaO is optimized.

We can see that, aside from the component types and the user requested type, the generic
self-configuration module does not require any service-specific knowledge. Therefore, as
long as components and requests have well-defined types, such a generic self-configuration
module can be shared by any services without extra efforts from the providers, resulting in
low development cost.

On the flip side, this approach has limited effectiveness since it does not take advantage
of the service-specific knowledge. For example, when the self-configuration module needs
to find feasible configurations, the search space can potentially be huge since there can be



20 CHAPTER 2. RECIPE-BASED SELF-CONFIGURATION ARCHITECTURE

a large number of component types, many of which may be irrelevant to the target service.
Moreover, in step 2 above, the number of components may not be a good selection metric
for all services. Finally, when selecting the best candidate for each component, the generic
module can only use the embedded generic optimization criteria. Therefore, the generic
approach may be inefficient in finding service configurations, and the result may also be
sub-optimal according to service-specific criteria.

To summarize, these two previous approaches present a trade-off between effectiveness
and cost. Since our goal is to achieve both high effectiveness and low development cost,
we need a solution that can achieve the best of both worlds. In the next section, we present
our solution.

2.3 Proposed solution

From the above discussions, we can see that the main reason that the service-specific ap-
proach can achieve high effectiveness is that it is able to make use of the provider’s service-
specific self-configuration knowledge. On the other hand, the main reason that the generic
approach can achieve low development cost is because the generic infrastructure knowledge
is implemented in the generic self-configuration module shared by all service providers. To
achieve the best of both worlds, we propose arecipe-based self-configurationapproach for
building self-configuring services. In our approach, we abstract the service-specific self-
configuration knowledge from the generic infrastructure knowledge. The generic knowl-
edge is implemented in a general self-configuration module namedsynthesizershared by
different services, and a service provider can express its service-specific knowledge in the
form of a recipe. Self-configuration is performed by the synthesizer using the service-
specific knowledge in the recipe and the generic knowledge embedded in the synthesizer.

Continuing the above video streaming example, if such a service is built using recipe-
based self-configuration, the recipe may include the following service-specific knowledge.

• If user input format is MPEG4, then

1. Two components are required, one with type MPEG2Server and the other with
type MPEG24Transcoder.

2. The two components should be selected such that the bitrate-weighted sum of
latencies is minimized.

On the other hand, the following generic knowledge may be embedded in the synthesizer.

1. Use infrastructure I1 to find candidates for each required type of component.

2. If the component selection criteria involves latency, use infrastructure I2 to obtain
latency information for all candidates.

3. Select a candidate for each component using the service-specific criteria.
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Using a combination of these two types of knowledge, the synthesizer can then compose
an optimal service configuration for a particular user request.

To realize this recipe-based self-configuration approach, one key issue that needs to
be addressed is: what service-specific knowledge should be abstracted from the generic
infrastructure knowledge? We identify the following three important aspects of service-
specific self-configuration knowledge.

• Component type determination: This aspect of the knowledge specifies what types
of component are needed to satisfy the user requirements in a particular user request
and to accommodate the environment characteristics. A service provider needs to be
able to specify service-specific logic in the recipe to determine the types of needed
components.

• Component selection criteria: For each type of component needed for a user request,
there may be multiple eligible candidates, and the synthesizer needs to select a can-
didate for each component. The synthesizer should not simply select an arbitrary
one since the service provider will likely have its own service-specific criteria for
component selection. Therefore, a service provider needs to be able to specify such
selection criteria in the recipe.

• Local adaptation knowledge: After the initial configuration is composed, it starts
serving the users. As discussed earlier, local adaptation is then needed at run time
to adapt the configuration to changes in user requirements and environment char-
acteristics. We have identified three types of service-specific knowledge for local
adaptation.

– Adaptation strategiesspecify when and how to perform local adaptation. Note
that adaptation strategies that operate at the component level will also involve
component type determination and component selection criteria as described
above.

– Customization knowledgespecifies how the strategies should be customized ac-
cording to the actual configuration and environment.

– Coordination knowledgespecifies how the strategies should be coordinated if
the adaptations they try to perform conflict with one another.

We now use the multiplayer gaming service and the video conferencing service exam-
ples from the previous chapter to illustrate these aspects of service-specific self-configura-
tion knowledge.

Examples. The most basic form of a self-configuring service is one that needs to select a
single component to optimize some service-specific criteria. The multiplayer online gam-
ing service shown in Figure 2.2 is an example of such a service. In this example, four
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Figure 2.2: A self-configuring multiplayer online gaming service.

Figure 2.3: A video conferencing service example.

players want to play a multiplayer online game together, so they send a request to a self-
configuring gaming service asking for a game server to host their gaming session. Deter-
mining the needed type of component is straightforward since all requests can be satisfied
using a single game server. However, the provider may have many servers at its disposal,
and in order to provide good gaming performance, the service cannot just use a random one
for the session. In this case, the provider’s service-specific component selection criterion is
to minimize the maximum latency experienced by any players in the session.

The video conferencing service in Figure 2.3 is a more sophisticated example where
the service configuration may need to change according to the particular user requirements
and environment, and the selection of multiple components may need to be “coordinated”.
In this example, five users want to hold a video conference: P1 and P2 have MBone con-
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ferencing applications vic/SDR (VIC), P3 and P4 use NetMeeting (NM), and P5 uses a
receive-only handheld device (HH). The service provider has its service-specific logic for
determining the types of components needed to satisfy a particular request. For example,
if there are both VIC and NM users, a video conferencing gateway (VGW) should be used
for protocol translation and video forwarding; if a HH user participates in the session, a
handheld proxy (HHP) should be used; and an End System Multicast (ESM) [23] over-
lay consisting of ESM proxies (ESMPs) can be used to enable wide-area multicast. Given
a user request, these service-specific rules can be applied accordingly to determine what
types of components are needed.

After determining the component types, the service needs to select the actual compo-
nents. In order to optimize user-experienced performance, the service-specific component
selection criterion in this case is the objective shown in Figure 2.3. The main difference
between this example and the gaming service example is that in order to find the opti-
mal configuration based on the given objective in this case, the selection of the multiple
components needs to be “coordinated”. If the service only perform “local optimization”
to select each component independently, the resulting configuration may be substantially
sub-optimal with respect to the objective function. Therefore, in such cases, “global op-
timization” is needed, i.e., all components need to be selected in a coordinated fashion
according to the global objective.

The above examples illustrate the service-specific knowledge for global configuration.
To illustrate the service-specific knowledge for local adaptation, we continue the video
conferencing example above. At run time, i.e., after the participants have begun using
the composed global configuration, the service needs to be able to adapt the configura-
tion to changes in user requirements and environment. The service provider may have
service-specific adaptation strategies, for example, “S1: if a new NM user wants to join
the conferencing session, connect the new user to the VGW”, “S2: if the VGW becomes
overloaded, replace it with a higher-capacity VGW”, and so on. The provider may also
have service-specific rules for customizing the strategies according to the actual configu-
ration and environment. For example, the above strategy S2 may be applied under normal
circumstances; however, when the configuration cost exceeds a service-specific threshold,
the provider may want to change the strategy such that instead of replacing the VGW, it
degrades the service quality. Finally, the provider may have service-specific policies for
coordinating the different strategies. For example, if a new NM user joins (i.e., S1 is in-
voked) and the VGW becomes overloaded (i.e., S2 is invoked) at the same time, S1 should
wait until S2 is finished (which replaces the VGW).

To summarize, these examples illustrate the three aspects of service-specific self-confi-
guration knowledge that we have identified, namely, component type determination, com-
ponent selection criteria, and local adaptation knowledge. To allow service providers to
build effective self-configuring services with low development cost, we propose that such
knowledge should be abstracted from the generic infrastructure knowledge and be ex-
pressed in a recipe, and the synthesizer, a general self-configuration module, implements
the generic infrastructure knowledge to access the supporting infrastructures and interprets
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Figure 2.4: Trade-off between effectiveness and development cost.

the recipe to perform self-configuration. Figure 2.4 shows a comparison of recipe-based
self-configuration and the two previous approaches in terms of effectiveness and develop-
ment cost. By providing a general self-configuration module with embedded generic infras-
tructure knowledge, our approach relieves service providers from having to worry about the
supporting infrastructures and technologies so that they can concentrate on the higher-level,
service-specific issues. By allowing a service provider’s service-specific knowledge to be
expressed in a recipe, our approach can use such knowledge to perform self-configuration.
Therefore, the effectiveness of our approach is close to that of the service-specific approach,
and the development cost is close to that of the generic approach. In the next section, we
present the recipe-based self-configuration architecture.

2.4 Recipe-based self-configuration architecture

Figure 2.5 illustrates the recipe-based self-configuration architecture. Like the previous
generic and service-specific approaches, the recipe-based self-configuration architecture is
basically an instance of the general self-configuration architecture depicted in Figure 2.1.
The synthesizer, playing the role of the self-configuration module, performs self-configura-
tion using functionalities provided by the supporting infrastructures and technologies. First,
let us look at how a self-configuring service is built using the recipe-based architecture and
how it operates. The operations of a recipe-based self-configuring service can be divided
into three stages, as shown in Figure 2.6.

At design time(Figure 2.6(a)), the synthesizer exports arecipe representationthat can
be used by service providers to express their service-specific self-configuration knowledge.
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Figure 2.5: Recipe-based self-configuration architecture.

To build a self-configuring service, a service provider will transform its service-specific
knowledge, including component type determination, component selection criteria, and
local adaptation knowledge into arecipe using the recipe representation. The recipe is
submitted to the synthesizer to complete the self-configuring service.

At invocation time(Figure 2.6(b)), a user invokes this service by sending a request (not
shown in the figure) to the synthesizer. The synthesizer performs global configuration us-
ing the service-specific knowledge in the recipe to find an optimal service configuration
for the request. This requires functionalities provided by the supporting infrastructures and
technologies. During this stage, the synthesizer also uses the customization knowledge to
customize the adaptation strategies needed later. In addition, the synthesizer extracts the
coordination knowledge and passes it on to the adaptation coordinator (AC). The synthe-
sizer then informs the requesting user that the composed configuration is ready, and the
service session starts.

At run time (Figure 2.6(c)), i.e., after the service session is started, the synthesizer
monitors the service configuration and uses the adaptation strategies in the recipe to mod-
ify the configuration when it is necessary to adapt to changes in user requirements and
environment. When an adaptation strategy is executed, the changes that it wants to make
are proposed to the AC. If the proposal does not conflict with other proposals, the changes
can be carried out. If a conflict exists between multiple proposals, the AC will use the co-
ordination knowledge to determine which proposals should be accepted and which should
be rejected.

As discussed earlier, many of the required lower-level infrastructures and technologies
for self-configuration already exist. In this dissertation, we assume that previous work can
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(a) Design time (b) Invocation time

(c) Run time

Figure 2.6: Operations of a recipe-based self-configuring service.

be leveraged to provide the lower-level mechanisms, and therefore, we do not address is-
sues such as component reusability and interoperability, standardized service description,
network measurement and monitoring, resource reservation, billing/authentication for com-
ponent deployment, and so on. Instead, we focus on the missing elements that are needed
to realize recipe-based self-configuration. Specifically, we focus on the shaded elements in
Figure 2.5. We now briefly describe these elements.

Synthesizer and recipe representation. In our architecture, the synthesizer plays the
role of the self-configuration module for a self-configuring service. The synthesizer pro-
vides two main functionalities. First, it allows a service provider to submit the service-
specific knowledge in the form of a recipe that will be used to guide the self-configuration
tasks, i.e., the synthesizer must be able to interpret the service-specific knowledge in the
recipe. Secondly, the synthesizer implements the generic infrastructure knowledge that is
necessary for performing self-configuration and can be shared by different services. Using
the recipe and the infrastructure knowledge, the synthesizer performs global configuration
and local adaptation.

In order to allow service providers to express their service-specific knowledge, we de-



2.4. RECIPE-BASED SELF-CONFIGURATION ARCHITECTURE 27

fine a recipe representation in the form of APIs exported by the synthesizer. A provider
can use these APIs to write a recipe that specifies the service-specific component selec-
tion criteria, component type determination rules, and local adaptation knowledge. The
synthesizer also implements heuristics and algorithms for component selection using infor-
mation obtained from the supporting infrastructures. In Chapter 4, we describe the recipe
representation and the design and implementation of the synthesizer for supporting global
configuration.

Network-Sensitive Service Discovery infrastructure. Given the service-specific com-
ponent selection criteria specified in the recipe by the provider, the synthesizer needs to
find the combination of components that optimizes the criteria. This results in two types of
component selection operations, single component selection using local optimization cri-
teria and coordinated selection of multiple components using global optimization criteria.
Although such operations can be supported using the functionalities provided by existing
service discovery and network measurement infrastructures, previous solutions either can-
not make use of the service-specific criteria or incurs high overhead. To efficiently support
component selection based on service-specific criteria, we propose the Network-Sensitive
Service Discovery (NSSD) approach.

NSSD integrates the functionalities of the service discovery and network measurement
infrastructures and supports service lookups based on both functional and network perfor-
mance attributes. For single component selection, a self-configuring service can simply
specify the local optimization criteria in a query to the NSSD infrastructure, and the NSSD
infrastructure will return the best candidate accordingly. For coordinated selection of mul-
tiple components, we propose a heuristic that greatly reduces the size of the search space of
the global optimization problem by selecting a small number of candidates for each com-
ponent using a local objective, and global optimization is performed on the reduced search
space. To support this heuristic, the NSSD infrastructure is able to return the bestn candi-
dates for a component using a local objective. The details of the NSSD infrastructure are
presented in Chapter 3.

Local adaptation support. The synthesizer design and recipe representation described
above support global configuration at invocation time. As discussed earlier, local adapta-
tion at run time is also an important part of self-configuration. Therefore, we extend the
architecture to support run-time local adaptation as follows.

Performing local adaptation requires three types of service-specific knowledge: adapta-
tion strategies, customization, and coordination. Although most previous efforts for adap-
tation support are able to handle adaptation strategies in some form, they do not address the
customization and coordination issues. We extend our recipe representation to allow ser-
vice providers to specify their service-specific adaptation strategies, customization rules,
and coordination policies in their recipes. We also extend the synthesizer to customize the
strategies accordingly and execute the strategies at run time when appropriate. After an
adaptation strategy is executed, a proposal is sent to the adaptation coordinator (AC). The
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proposal specifies the changes it wants to make to the configuration. When there are multi-
ple proposals, the AC uses the coordination knowledge in the recipe to detect conflicts and
resolve them by rejecting or delaying the appropriate proposals. The details of the local
adaptation support are presented in Chapter 5.

2.5 Scope

In this section, we discuss the scope of this dissertation. As mentioned earlier, we fo-
cus on self-configuring services that are component-based, session-oriented, and network-
sensitive. Therefore, we do not explicitly address parameter-level self-configuration, which
has been studied previously, for example, to dynamically allocate resources among differ-
ent components according to user requirements. Such self-configuration mechanisms are
complementary to our approach and can be integrated into our architecture. In addition,
because of the session-oriented nature, we emphasize the problem of finding the optimal
global configuration. As a result, our self-configuration mechanisms may be too heavy-
weight for services based on the request-response model. However, as demonstrated later,
our approach is flexible enough that in such cases, a provider can choose to sacrifice the
optimality to increase the efficiency of self-configuration.

For run-time adaptation, we focus on performance-related local adaptations that try to
change the current service configuration incrementally in response to performance prob-
lems. We also simplify the coordination problem by assuming that conflicts between adap-
tations only occur due to the direct effects of adaptations. In the more general case, the
effect of a simple adaptation can potentially propagate throughout the entire configuration,
i.e., every adaptation can potentially conflict with all other adaptations “indirectly”. In
this dissertation, we do not explicitly address such indirect conflicts, and we leave it to the
providers to identify them at a higher level.

2.6 Related work

In the previous chapter, we have discussed previous efforts for building self-configuring
services that adopted the generic approach or the service-specific approach. We now look
at previous work that focuses on infrastructures and technologies that provide lower-level
mechanisms required for self-configuration.

Component technologies. Many existing technologies and framework address the issue
of component reusability and interoperability. For example, Microsoft’s Component Ob-
ject Model (COM) [24] and Sun’s JavaBeans [77] allow developers to implement software
modules with well-defined interfaces and provide mechanisms for combining such compo-
nents into an integrated system. Technologies such as the Common Object Request Broker
Architecture (CORBA) [101], Distributed COM (DCOM) [32], Java Remote Method Invo-
cation (RMI) [78], and Simple Object Access Protocol (SOAP) [119] provide mechanisms
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for using components that are distributed on different network hosts. Enterprise JavaBeans
(EJB) [38], CORBA Component Model (CCM) [13], and the .NET framework [91] pro-
vide low-level mechanisms such as location, transaction, and security model and make
them transparent to users of distributed components.

Traditionally, distributed components are combined manually by developers to provide
integrated functionalities. For example, to make use of distributed Java components, one
can implement a Java [81] program that instantiates and invokes the distributed objects.
Similarly, one can describe how various components should interact using a language such
as the Business Process Execution Language for Web Services (BPEL4WS) [5]. A self-
configuring service can accomplish this automatically without human intervention by, for
example, generating a BPEL description of the composed configuration, which can then
be executed using existing mechanisms. Previous research efforts such as SWORD [109],
Ninja [57], and Partitionable Services Framework [75] also include similar functionalities
for deploying and invoking components in a composed configuration.

Other previous research efforts have looked at how to make components “adaptive”. For
example, Rover [80], Puppeteer [33], and Odyssey [100] provide interfaces to control the
components and adjust their run-time parameters in response to run-time changes. In [128],
Q-RAM [85], and [108], adaptations are performed by adjusting the resource allocation
among different components according to utility functions.

Service discovery. Many solutions have been proposed for the service discovery prob-
lem, and they mostly vary in the flexibility of the service description and in system proper-
ties such as scalability. For example, a service can be described using attribute-value pairs
that represent the functional properties of the service. To find a service, one can construct a
query that includes attribute-value pairs representing the properties of the desired service.
Such a query can then be matched against the descriptions of available services to find the
suitable ones. This approach is used in the Service Location Protocol (SLP) [61], which
has a central directory that stores available service information and handles service queries.
The Service Discovery Service (SDS) [27] proposes a hierarchical system to address the
scalability issue. The Metacomputing Directory Service (MDS) [41] uses a similar ap-
proach to describe and lookup resources available in a Grid environment.

Another approach is to describe a service using its input/output or requires/provides
interfaces. For example, Jini [79] allows a user to find Java components that have the
desired interfaces. Similarly, Web services can be described using the Web Services De-
scription Language (WSDL) [133], and Universal Description Discovery & Integration
(UDDI) [125] supports the discovery of such services.

Network measurement. A network measurement infrastructure provides network per-
formance information for the target network host(s). Many network measurement frame-
works have been proposed before. For example, IDMaps [46] allows one to query the
network latency between two network hosts. Global Network Positioning (GNP) [97] can
be used to compute a set of coordinates for each network host so that the network latency
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between two hosts can be easily calculated. Remos [59] provides a rich set of network
information such as available bandwidth measurement, topology, and so on.

Deployment. Component deployment involves a wide range of issues, for example, re-
source reservation, admission control, remote execution, authentication, and so on. Most of
these issues have been studied in previous work. For example, Legion [95] and Globus [42]
provide component deployment mechanisms that work across administrative domains. Dar-
win [14], Globus [26], and Legion [17] provide mechanisms for resource reservation and
enforcement.

Remote initialization and execution of components can be provided by component tech-
nologies such as Java RMI. Ninja [57] provides component deployment mechanisms in a
cluster environment, and Sahara [111] provides fault-tolerant capabilities. The security
models in Java, .NET, and other component technologies address the security issue in com-
ponent deployment.

2.7 Chapter summary

In this chapter, we first identified the required elements of a self-configuring service and
described two previous approaches for building such services. We observe that the service-
specific approach requires high development cost while the generic approach has limited ef-
fectiveness. To address these problems, we propose a recipe-based self-configuration archi-
tecture that abstracts the service-specific knowledge from the generic infrastructure knowl-
edge. Therefore, a provider’s service-specific knowledge can be expressed in a recipe, and
the generic knowledge is implemented in the synthesizer, which is shared by different ser-
vices. We used examples to illustrate the key aspects of service-specific knowledge needed
for self-configuration. We then identified the missing elements that are needed for build-
ing such recipe-based self-configuring services. The design of these elements, namely the
Network-Sensitive Service Discovery (NSSD) infrastructure, the synthesizer and the recipe
representation, and the local adaptation support, are the focus of this dissertation.



Chapter 3

Network-Sensitive Service Discovery

As discussed in the previous chapter, component selection based on service-specific net-
work performance criteria is the fundamental operation for self-configuring services. In
order to find the optimal service configuration, the self-configuration module needs to find
the best candidate for each required component according to some service-specific opti-
mization metrics. Two types of component selection operations need to be supported: sin-
gle component selection and coordinated selection of multiple components. Although the
required functionalities, service discovery and network measurement, already exist, previ-
ous approaches to supporting such operations either do not allow service-specific criteria
or incur unnecessary overhead that may result in scalability problems.

In this chapter, we present the design and implementation of thenetwork-sensitive ser-
vice discovery(NSSD) infrastructure that supports the component selection operations. Our
approach is based on the observation that most of the tasks required for component selec-
tion are generic and can be performed by the infrastructure. Therefore, NSSD integrates
the functionalities of service discovery and network measurement and provides a simple
API for component discovery based on not only the required functional properties but also
the desired network properties. We discuss how NSSD can be used by a self-configuration
module to perform both single component selection and coordinated selection of multiple
components.

The remainder of this chapter is organized as follows. We formulate the problem and
elaborate on the challenges in the next section. In Section 3.3 we describe our network-
sensitive service discovery solution, including the design of the API and the mechanisms
used for network-sensitive service discovery. We describe a prototype system in Sec-
tion 3.4, and Section 3.5 presents an evaluation using the PlanetLab testbed. Finally, we
discuss related work and summarize.

3.1 The network-sensitive service selection problem

In this section, we first look at the component selection problem in the self-configuring ser-
vice examples from the previous chapters, and then we formulate such component selection

31
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Figure 3.1: A multiplayer online gaming service example.

Figure 3.2: A proxy-based End System Multicast (ESM) example.

problems as the more general network-sensitive service selection problem.

3.1.1 Application examples

In Chapter 2, we described several examples of self-configuring services, and we identified
that one of the key aspects of service-specific self-configuration knowledge is the optimiza-
tion criteria for component selection. In other words, component selection based on such
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Figure 3.3: A video streaming service example.

service-specific criteria is a fundamental operation for most (if not all) self-configuring ser-
vices. Now let us revisit the examples from the previous chapter and take a closer look at
the component selection problem. Figure 3.1 shows a scenario for the multiplayer online
gaming service: four users want to start a gaming session, and they ask the gaming service
for a game server to host their session. Specifically, they need a game server that not only
satisfies certain functional properties, e.g., supporting a particular game and having certain
anti-cheating features, but also delivers good “performance”. As shown in the figure, for
this particular service, the provider’s service-specific selection criteria for the server com-
ponent is to minimize the maximum latency from the server to any players in the session.

The second example in Figure 3.2 is a scenario for an End System Multicast (ESM) [23]
service, which is used as part of the video conferencing service in Chapter 2. In this proxy-
based ESM service, each multicast participant sends its packets to an ESM proxy, and all
proxies serving this group construct an ESM overlay to efficiently deliver the packets to
all other participants. In order to reduce the total network resource usage of the service
configuration and improve the performance for the users, the provider determines that the
service-specific selection criteria for the components should be to minimize the sum of the
latencies between each user and the corresponding ESM proxy.

Figure 3.3 shows a scenario for the video streaming service example in Chapter 1.
Suppose a user wants to receive low bit rate MPEG-4 video streams, and the service deter-
mines that the request can be satisfied by by putting together a high bit rate MPEG-2 video
streaming server and an MPEG-2-to-MPEG-4 video transcoding server. As shown in the
figure, if the provider’s goal is to minimize the total bandwidth usage, then “minimizing
the bitrate-weighted sum of latencies” may be used as the component selection objective.
Using such an objective presents an interesting situation: selecting a streaming server close
to the user can reduce bandwidth usage, but a more distant streaming server may turn out
to be a better choice if we can find a transcoder that is very close to the server. In other
words, this problem requires the coordinated selection of multiple components.
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3.1.2 Problem formulation

From the examples above, we categorize component selection operations into two types:

• Single component selection: The self-configuration module only needs to select a
single component at a time. One possibility is that the self-configuring service only
needs one component, e.g., the multiplayer gaming service only needs a single gam-
ing server that minimizes the maximum latency. Another possibility is that the ser-
vice needs multiple components, but each component can be selected independently,
e.g., a service needs a transcoder that is close to the server and a proxy that is close
to the client. Therefore, each component can be selected individually. In either case,
the component selection is alocal optimizationproblem

• Coordinated selection of multiple components: The self-configuration module
needs to select multiple components together, for example, in the above video stream-
ing service, selecting each component individually may result in sub-optimal config-
urations. Therefore, to select the optimal set of components, the self-configuration
module needs to select all components in a coordinated fashion, i.e., it needs to solve
aglobal optimizationproblem.

We now formulate the component selection problem as a more generalnetwork-sensi-
tive service selection(NSSS) problem: auserneeds to find aservice(or a set of services)
offered by aprovider(or providers) according to not only the requiredfunctional properties
such as service type but also the desirednetwork propertiessuch as latency to a certain
network host. In other words, the selection of services is based onuser-specific selection
criteria. There may be multiple providers for a particular service, e.g., video transcoding,
and each provider may have a set of distributedserversto deliver the service, e.g., a set of
video transcoders at different locations. In the next section, we look at currently available
solutions for the NSSS problem.

3.2 Current solutions

Existing research related to the NSSS problem falls in two categories.

• Service discovery: traditional service discovery infrastructures allow a user to find a
set of servers with certain functional properties, where the properties are typically de-
scribed as a set of attribute-value pairs. Existing solutions, for example, [61] and [27],
differ in the flexibility of naming and matching and in their scalability properties.
Similar schemes such as the Metacomputing Directory Service (MDS) [41, 25] have
also been proposed in the context of computational Grids.

• Network-sensitive server selection: many previous studies have looked at the prob-
lem of how to select among a given set of servers the one that best satisfies the
user’s network performance requirements. Basically, these techniques obtain the
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relevant network performance information of all the candidate servers from a net-
work measurement infrastructure such as Remos [59] or GNP [97] and then select
the best candidate. For example, some approaches perform active probing to select
the best server [12, 36], while others use network properties that have been com-
puted, measured, or observed earlier [4, 114, 116, 117]. Other researchers have also
looked at similar resource selection problems in Grid environments [59, 87]. Most
of these techniques were developed for specific applications, for example, identify-
ing the Web server that is “closest” to a client, i.e., having the highest-bandwidth or
lowest-latency path to the client [4, 12, 83, 116].

Clearly, the NSSS problem can be solved using the existing service discovery and net-
work measurement infrastructures. More specifically, a user first uses a service discov-
ery infrastructure to obtain a list of servers that can provide the required service and then
queries a network measurement infrastructure to obtain the relevant network performance
information of each candidate. The best server can then be selected according to the par-
ticular network performance requirements.

As an example, in the self-configuring multiplayer gaming service, the self-configura-
tion module plays the role of the user in the above approach. Therefore, it will first get a
list of gaming servers from a service discovery infrastructure and then obtain each server’s
latencies to all players in the target session. Finally, it selects the server that minimizes the
maximum latency.

Although thisuser-sideapproach may be suitable for some applications, e.g., Web
mirror server selection, there are several problems. The first problem is efficiency. Con-
sider a scenario where there are many self-configuring services, each of which has a self-
configuration module that is trying to perform component selection, and many of these
services require a commonly used component. There are likely a large number of candi-
dates for this component, and, using the above approach, the same long list of candidates
will be returned to all those self-configuration modules asking for the component. Further-
more, each self-configuration module will then ask for network performance information
of each of the candidates. Therefore, this approach is inefficient and can potentially result
in scalability problem. The second problem is complexity. Many of the tasks performed by
the user in this approach are in fact generic and can be performed by the infrastructure. Re-
quiring every user to re-implement these generic functionalities unnecessarily increases the
complexity on the user side. Finally, one requirement of this approach is that the user is able
to get a list of all servers offered by each provider. However, commercial providers may
not be willing to expose all their individual servers, in which case this user-side approach
cannot be performed.

An alternative is aprovider-sideapproach, in which a user first selects a provider, and
the provider then internally applies a network-sensitive selection technique to select one of
its servers for the user. Although this approach may be suitable for some applications, e.g.,
cache selection in content distribution networks, its main problem is that the user cannot
specify the selection criteria and does not know what level of performance can be expected.
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To address the NSSS problem in the context of self-configuring services, we need an
infrastructure that (1) provides the generic functionalities for network-sensitive selection
to reduce the overhead and (2) allows the use of user-specific optimization criteria. In
this chapter, we describe our solution,network-sensitive service discovery(NSSD), which
integrates service discovery and network-sensitive server selection functionalities. When
looking for a service, a user can specify both functional and network properties through
a simple API provided by NSSD, which then returns the optimal service(s) according to
the user-specific criteria. In effect we have moved most of the complexity of server selec-
tion from the user to the NSSD infrastructure. Providers do not need to expose all their
server information to all users since server selection is handled by NSSD, which is trusted
by the providers. Moreover, by integrating service discovery and server selection, NSSD
can amortize overhead such as collecting network information across multiple users and
can also apply distributed solutions. Therefore, we can solve the NSSS problem more
efficiently and in a more scalable way.

3.3 Network-Sensitive Service Discovery

In this section, we define the API used for formulating NSSD queries and describe several
possible NSSD designs.

3.3.1 NSSD API

The purpose of the NSSD API is to let a user specify the required functional properties and
the desired network properties of the target service. NSSD uses the functional properties
to find the candidates and then uses the network properties as optimization criteria to select
the best candidate using some optimization algorithms. Since traditional service discovery
infrastructures already provide APIs for specifying the functional properties, we focus on
the specification of the network properties.

To define the NSSD API, we need to determine how much complexity we want to move
into the NSSD infrastructure, and how much should remain at the user side. Let us revisit
the three self-configuring service examples in Section 3.1.1 and how NSSD may support
each scenario. Note that the “user” of NSSD is the self-configuration module of each self-
configuring service.

• Multiplayer online gaming (Figure 3.1): One service, i.e., gaming server, is required.
The selection criteria is “minimize the maximum latency to players P1, P2, P3, and
P4”. To support this scenario, NSSD needs to (after getting a list of gaming servers)
obtain the latencies between each server and all players, sort all servers according to
their maximum latency, and select the best one.

• End system multicast (ESM) (Figure 3.2): A single service, ESM, is required. How-
ever, this service requires three “identical servers”, i.e., three ESM proxies. The
selection criteria is “minimize the sum of latencies between each of P1, P2, P3, and
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P4 and the corresponding ESM proxy”. To support this scenario, NSSD needs to first
recognize that this can be formulated as thep-median optimization problem [29].
Then NSSD can obtain the necessary latency information and use, for example, an
approximate algorithm to solve the optimization problem.

• Video streaming (Figure 3.3): Two different services, video streaming and video
transcoding, are required. The selection criteria is to minimize (B1s+ B2u), where
B1 and B2 are, respectively, the output bit rates of the streaming service and the
transcoding service, andsandu are the latency between the streaming service and the
transcoding service and the latency between the transcoding service and the client,
respectively. To support this scenario, NSSD needs to have an API that allows a
user to specify an arbitrary objective function. In addition, NSSD needs to be able
to formulate an optimization problem from the objective and then solve the problem
using, for example, a linear programming solver.

We can see that supporting the first scenario is fairly straightforward since most of the
tasks involved are generic and do not require a lot of computation power, and the selection
criteria only involves a single metric and therefore can be specified using a simple API. On
the other hand, supporting the video streaming scenario is difficult and undesirable because
(1) a more complex API is required, (2) solving arbitrary global optimization problems
for every service is expensive, and (3) if a user has heuristics for the global optimization,
NSSD cannot make use of them. Therefore, we decided to draw the line between the first
and the third scenarios, i.e., NSSD will allow users to specify a local optimization metric
for a single service but not a global objective function for multiple services.

Note that the second scenario is a special case. It is a global optimization problem,
but it may be a common form of NSSD queries, so it will be convenient if NSSD supports
it. Furthermore, the selection criteria can be specified using the same simple API required
for specifying the local optimization metric. Therefore, in our design, NSSD also supports
selecting a single service that requires multiple identical servers.

Of course, coordinated selection of multiple components will be necessary for many
self-configuring services. Therefore, NSSD should at least provide some “hints” that can
help users perform global optimization. Next, we present the basic NSSD API that supports
local optimization, and in Section 3.3.2, we discuss how we extend NSSD to support global
optimization.

Figure 3.4 shows the basic NSSD API that supports service selection based on local
optimization metrics. The argument “numservers” specifies how many identical servers
are required in the returned solution. The solution is returned, for example, in the form of
IP addresses. When multiple identical servers are needed in a solution, “mapping” spec-
ifies which server is used for each user. Note that the API here only shows the latency,
bandwidth, and load metrics. Of course, in practice it may be necessary to support a richer
set of metrics, for example, CPU speed, memory size, and other metrics that are useful for
Grid applications [87].

Let us use the End System Multicast (ESM) example in Figure 3.2 to illustrate how the
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Input
service_properties // service attributes
target_list // optimization targets
num_servers // num. of identical servers needed
latency_type // MAX /AVG/NONE
latency_constraint // constraint/MINIMIZE /NONE
bw_type // MIN /AVG/NONE
bw_constraint // constraint/MAXIMIZE/NONE
load_constraint // constraint/MINIMIZE /NONE

Output
solution // the best solution
mapping // target-server mapping

Figure 3.4: The NSSD API.

Input
service_properties: "(type=ESMProxy)(protocol=Narada)

(version=1.0)"
target_list: "1.1.1.1,2.2.2.2,3.3.3.3,4.4.4.4"
num_servers: 3
latency_type: AVG
latency_constraint: MINIMIZE
bw_type: NONE
bw_constraint: NONE
load_constraint: NONE

Output
solution: "5.5.5.5,6.6.6.6,7.7.7.7"
mapping: "0,1,2,2"

Figure 3.5: Using the API in the ESM example.

NSSD API is used. The top part of Figure 3.5 shows the NSSD query in this scenario. We
first specify that we want to find ESM proxies that are using the Narada protocol version
1.0. The next parameter specify that the selection should be optimized for P1, P2, P3, and
P4 in this scenario. The “numservers” parameter specifies that we want three identical
ESM proxies in the returned solution. The remaining input parameters specify that we
want to minimize the average latency, and we do not have constraints or preferences on
bandwidth and load. Assuming that the best solution is the configuration in Figure 3.2, the
result returned by the API is shown in the bottom part of Figure 3.5. NSSD returns the
best solution, which consists of three ESM proxies, and the “mapping” specifies that P1
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Figure 3.6: Coordinated selection of multiple components for a video conferencing service.

is assigned to ESMP1 at IP address 5.5.5.5, P2 is assigned to ESMP2, and P3 and P4 are
assigned to ESMP3.

3.3.2 Supporting coordinated selection

As discussed above, NSSD only supports service selection based on local optimization
metrics. However, since coordinated selection of multiple components will be necessary
for many self-configuring services, we now discuss how we extend the basic NSSD design
to provide “hints” that are useful for users to perform global optimization. First, let us
revisit the self-configuring video conferencing service example from Chapter 2 and take a
closer look at the challenges of coordinated selection.

Suppose users P1 to P5 in Figure 3.6 want to establish a video conferencing session:
P1 and P2 have MBone conferencing applications vic/SDR (VIC), P3 and P4 use Net-
Meeting (NM), and P5 uses a receive-only handheld device (HH). The self-configuring ser-
vice determines that the following components are needed: a video conferencing gateway
(VGW) for protocol translation and video forwarding between VIC and NM, a handheld
proxy (HHP) for P5, and an End System Multicast (ESM) overlay consisting of three ESM
proxies (ESMPs) for wide-area multicast. As discussed earlier, the provider of this self-
configuring video conferencing service may want to minimize the total network resource
usage of the service configuration. Therefore, the provider may specify in its service recipe
that the service-specific optimization objective for component selection is to minimize the
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following function:

W1(d1 +d2 +d3 +d4 +
2
3
(e1 +e2 +e3))

+W2h1

+W3(n1 +n2) (3.1)

whereW1, W2, andW3 are weights for the three flow types (multicast, handheld, and Net-
Meeting), reflecting the difference in bandwidth consumption, and the other variables are
the latencies between nodes as depicted in Figure 3.6.

This example raises the following challenge: the selection of the different components
is mutually dependent, i.e., to find the optimal solution, all components need to be selected
together. Unfortunately, selecting all the components together may be too expensive. For
example, suppose there aren VGWs, n HHPs, andn ESM proxies available. To find the
optimal configuration, we need to look at roughlyn5 possible configurations, which is only
feasible whenn is small.

Since NSSD supports local optimization, a simple heuristic for solving this optimization
problem using NSSD is to select each component using local optimizations and then com-
bine the locally optimal solutions into a global solution. For example, the self-configuring
service can use NSSD to find the VGW that minimizes (n1 +n2), the HHP that minimizes
h1, and then the ESMPs that minimizes (d1+d2+d3+d4) given the previously found VGW
and HHP.

Of course, the problem with this heuristic is that a combination of locally optimal solu-
tions may not be globally optimal. To improve the performance of coordinated component
selection, we propose ahybridheuristic in which the local optimization supported by NSSD
is used to reduce the search space of the optimization problem, and then global optimization
is performed on the reduced search space. We describe the hybrid heuristic below.

Hybrid heuristic. The hybrid heuristic is based on the observation that in optimization
problems similar to the above case, although the locally optimal candidate for a component
may not be the globally optimal one, selecting a “locally good” candidate is more likely to
improve the global optimality than selecting a “locally bad” candidate. The reason is that
the metric used in the local optimization is part of the global objective, and as a result, for
example, if we minimize the local metric, the global objective is likely to decrease as well.
Therefore, the hybrid heuristic is that when solving a global optimization problem, instead
of looking at all possible combinations, we can reduce the search space by considering
only a small number of “locally good” candidates for each component. For example, in the
video conferencing scenario above, we can first the bestn VGWs (i.e., minimizingn1+n2)
and the bestm HHPs (i.e., minimizingh1). Then, for each of thenmpossible VGW/HHP
combinations, we find the optimal set of ESMPs, and we get a global solution. Therefore,
we have a set ofnmglobal solutions, and we can use Function (3.1) to evaluate them and
select the best global solution in this set.
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Input
service_properties // service attributes
target_list // optimization targets
num_servers // num. of identical servers needed
num_solutions // num. of solutions needed
latency_type // MAX /AVG/NONE
latency_constraint // constraint/MINIMIZE /NONE
bw_type // MIN /AVG/NONE
bw_constraint // constraint/MAXIMIZE/NONE
load_constraint // constraint/MINIMIZE /NONE

Output
solution // the best candidate(s)
mapping // target-server mapping(s)
fitness // the ‘‘score(s)’’ of the candidate(s)

Figure 3.7: The extended NSSD API.

In order to support this hybrid heuristic, NSSD needs to provide the “best-n-solutions”
feature, i.e., it must be able to returnn locally good candidates instead of only the best one.
To provide this feature, first, the NSSD API needs to be extended, and the extended API is
shown in Figure 3.7. The additional parameters include “numsolutions” and “fitness”. The
“num solutions” parameter lets a user specify how many locally good solutions should be
returned, and “fitness” represents the values of the local metric for returned solutions. The
“fitness” parameter is necessary for the user to perform global optimization on the reduced
search space.

Next, we discuss how the NSSD infrastructure supports the best-n-solutions feature.

Supporting best-n-solutions. In order to provide this best-n-solutions feature, NSSD
needs to determine the best set ofn candidates among all candidates. One simple algorithm
here is to sort all candidates according to the local optimization metric and return the bestn
candidates. One potential problem with this algorithm is that the returned candidates may
be “redundant” for the later global optimization. For example, suppose that NSSD needs
to return the best two VGWs among the three in Figure 3.8. Using the simple algorithm
above, NSSD returns VGW1 and VGW2, which are closest to P3 and P4. However, since
our ultimate goal is to minimize Function (3.1), VGW3 (which is very close to ESMP1) is
likely to be a better candidate especially if the weightW1 is relatively high. One important
observation here is that, since VGW1 and VGW2 are very close to each other, returning
both is redundant because they will have similar impact on the global optimality measured
by Function (3.1). Therefore, a second algorithm for selecting the bestn candidates to
return is to select a set of candidates that are more evenly distributed so that they are more
“representative” of the network characteristics of all candidates.
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Figure 3.8: An example of “redundant” candidates.

We believe using the hybrid heuristic for global optimization can yield a reasonably
good global solution and allow us to adjust the trade-off between global optimality and op-
timization cost by controlling the size of the search space for the final global optimization.
In the video conferencing example, ifn andm (the numbers of VGWs and HHPs returned
by NSSD, respectively) are set to 1, the resulting solution is simply a combination of locally
optimal solutions. On the other hand, ifn andmare the total numbers of VGWs and HHPs,
respectively, we are in fact performing an exhaustive search in the complete search space,
and we can find the globally optimal solution at a higher cost. In Section 3.4.4, we discuss
how the best-n-solutions feature is implemented, and in Section 3.5.4, we use the video
conferencing example to evaluate the effectiveness of the hybrid heuristic and compare the
different algorithms for selecting the bestn candidates.

3.3.3 A Simple NSSD Query Processor

In this section, we describe a simple NSSD query processor that formed the basis for our
prototype implementation. We discuss several alternative designs in the next section.

As shown in Figure 3.9, a simple NSSD query processor (QP) can be built on top
of a service discovery infrastructure (e.g., the Service Location Protocol [61]) and a net-
work measurement infrastructure that can provide network performance information such
as latencies between nodes. When the QP module receives an NSSD query (step 1 in Fig-
ure 3.9), it forwards the functional part of the query to the service directory (step 2). The
directory returns a list of candidates that match the functional properties specified in the
query (step 3). Then the QP module retrieves the necessary network information (e.g., the
latency between each of the candidate and user X) from the network measurement infras-
tructure (step 4). Finally, the QP module computes the best solution as described below
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Query Processor (QP)

Network
Measurement
Infrastructure

NSSD query:
Type=StreamingServer
minimize latency to user X

Query: 
Type=StreamingServer

Service Directory

Candidates:
server A
server B

Latency between A and X?
Between B and X?

A and X: 50
B and X: 75

NSSD reply:
server A

User X

1

5

4

3

2

Figure 3.9: Handling an NSSD query.

and returns it to the user (step 5).

One benefit of integrating service discovery and network-sensitive server selection into
the infrastructure is that caching can be used to improve performance and scalability. When
NSSD gets requests from many users, the cost of collecting eligible candidates, network
performance information, and server load information can be amortized if the same infor-
mation is needed for multiple requests. Furthermore, network nodes that are close to each
other should have similar network properties. Therefore, when handling requests, NSSD
can aggregate the nodes from different requests to reduce the amount of network perfor-
mance information required. For example, the same latency information can be used for all
users in an address prefix, all servers in a single cluster should have similar network prop-
erties, and so on. Such aggregation can increase the effectiveness of caching/amortization.
Finally, the caching/amortization is more effective when network performance information
that is more expensive to obtain is required. For example, eliminating the need for 100
users to obtain latency information to the same server using “ping” is obviously a much
smaller saving than eliminating the need for 100 users to obtain bandwidth information to
the same server using active bandwidth probing.

Selecting the best solution(s) requires NSSD to solve a fairly general optimization prob-
lem. Through the NSSD API described earlier, a user can specify many different combi-
nations of (1) constraints and preferences on three metrics (latency, bandwidth, and load),
(2) how many identical servers are needed in a solution, and (3) how many solutions are
needed. The QP computes the solution for a query as follows. First, the QP applies any
constraints in a query to eliminate any ineligible candidates. Then, the preferences in a
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query can be formulated as an optimization problem. If there is only a single preference,
the QP can simply sort the candidates accordingly. If there are multiple preferences (e.g.,
minimize load and minimize latency), there may not be any candidates that satisfy all pref-
erences. One possible solution is to have the QP define an order among the preferences
(e.g., in the order they appear in the query) and sort the candidates accordingly. Finally,
if a query requests multiple identical servers in a solution (e.g., requesting 3 ESM proxies
for 4 users), the optimization problem can be cast asp-median,p-center, or set covering
problems [30], which are more expensive to solve.

3.3.4 Alternative Implementations

The NSSD design outlined above is a simple integration of service discovery and network
measurement. It could be implemented as a directory service that gathers all service infor-
mation from services around the Internet and uses an internal or external network measure-
ment mechanism to support network-sensitive queries. Today’s web search engines such
as Google [56] show that this approach is probably feasible albeit expensive. However, if
service attributes are highly dynamic, it may be difficult to keep a centralized large-scale
directory up-to-date.

Alternatively, NSSD can also be built on a distributed architecture. Here we list a
number of possible approaches.

• In application-layer anycasting [136], each service is represented by an anycast do-
main name (ADN). A user submits an ADN along with a server selection filter (which
specifies the selection criteria) to an anycast resolver, which resolves the ADN to a
list of IP addresses and selects one or more from the list using the filter. To support
the NSSD functionalities, the ADN and resolvers can potentially be extended to al-
low users to specify the desired service attributes, and the filter can be generalized to
support more general metrics.

• Distributed routing algorithms are highly scalable, and they can, for example, be used
to find a path that satisfies certain network properties and also includes a server with
certain available computational resources [68]. A generalization of this approach can
be combined with a service discovery mechanism to handle NSSD queries.

• A Content Discovery System (CDS) based on hashing is described in [51]. The
system uses a distributed hash table (such as Chord [124]) to allow publishers and
subscribers to find each other in rendezvous points based on common attribute-value
pairs, which may be dynamic. Therefore, it can also be used as a service discovery
infrastructure, and one can incorporate network sensitivity into the query resolution
phase of the system so that the returned matches satisfy certain network properties
specified in the query.
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(|(&(game=Half-Life)(mod=Counter-Strike)
(version>=1.5)(load<=10))

(&(x-NSSD-targets=1.01,2.02;3.03,4.04)
(x-NSSD-maxlatency=minimize)))

Figure 3.10: A sample filter for the game example.

3.4 Implementation

We describe a prototype NSSD based on Service Location Protocol (SLP) [61] and Global
Network Positioning (GNP) [97]. We have experimented with versions of our NSSD im-
plementation on the ABone [1], Emulab [39], and PlanetLab [106] testbeds.

3.4.1 Extending SLP

Our prototype implementation of NSSD is based on OpenSLP [102], an open-source im-
plementation of the Service Location Protocol. In SLP, available services register their
information such as location, type, and attributes with a Directory Agent (DA), and users
looking for services send queries to the DA specifying the type and attributes of the de-
sired services. Service types and attributes are well known so that a user knows what to
ask for. SLP query specification is quite general: attributes can be specified as an LDAPv3
search filter [65], which supports, for example, logical operations, inequality, and substring
match. Therefore, a user query includes a service type (e.g., “GameServer”) and a filter,
e.g., “(&(game=Half-Life)(mod=Counter-Strike)(version>=1.5))”. We believe this query
representation is sufficiently general to support NSSD queries as defined by the API in
Section 3.3.1.

In order to support NSSD queries, we extended the semantics of the SLP filter to include
a set of special attributes, representing the parameters described in Figure 3.4. For example,
suppose a user wants to find a game server that (1) matches certain service attributes, (2) is
serving at most ten sessions, and (3) minimizes the maximum latency for the two players
whose GNP coordinates are “1.01,2.02” and “3.03,4.04”, respectively. These parameters
can be specified by the filter shown in Figure 3.10.

The original SLP API returns a list of “service URLs” [62]. To return additional
information about each returned solution such as the “fitness” and “mapping”, we ap-
pend the information to the end of the URLs. For example, to return the mapping, the
DA can return the following service URL: “service:GameServer://192.168.0.1;x-NSSD-
mapping=0,0,0,0”.

Since server load is also a service attribute, each server’s registration includes the load
attribute (e.g., “load=0.5”). When conducting “live” experiments (i.e., involving applica-
tions running on actual network hosts), we need mechanisms to dynamically update the
load value of each server. Our live experiments are developed and conducted on the Plan-
etLab wide-area testbed [106], which allows us shell access on about 70 hosts at nearly 30
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sites. We implemented a “push-based” load update mechanism: servers push their load in-
formation (in the form of a registration update) to the DA. In our evaluation, we look at how
the frequency of load update affects the performance of the server selection techniques.

3.4.2 Network Measurement

A network measurement infrastructure provides a way for users to obtain network infor-
mation. A number of such infrastructures have been proposed, for example, IDMaps [46]
and Global Network Positioning (GNP) [97]. Since it is in general much harder and more
expensive to estimate the bandwidth between two network nodes, most of these infras-
tructures only provide latency information. Therefore, currently, in our prototype NSSD
infrastructure, we focus on dealing with the latency metric. As mentioned earlier, more
metrics can be supported by adding the appropriate measurement infrastructures that pro-
vide such metrics and extending the API to support the specification of such metrics, and
the benefits of caching/amortization will be more evident when the required metrics are
more expensive to obtain.

In our implementation, we use GNP as the network measurement infrastructure to pro-
vide latency (round trip time) information between two network nodes. The key idea behind
GNP is to model the Internet as a geometric space using a set of “landmark nodes”, and
each network host can compute its own coordinates by probing the landmarks. It is then
straightforward to compute the distance (latency) between two hosts given their coordi-
nates. Since the PlanetLab testbed is our current platform, we use the GNP approach to
obtain a set of coordinates for every PlanetLab node.

In the GNP model, each node computes its own coordinates. Therefore, in our imple-
mentation, we use GNP coordinates as a service attribute, i.e., when a server register with
the SLP DA, the registration includes the coordinates of the server node. When a user spec-
ifies the list of optimization targets in a query (see the API in Section 3.3.1), each target is
specified in the form of GNP coordinates. When a QP asks for a list of candidates, the DA
returns the list along with the coordinates of each candidate. The advantage of this design is
that since the coordinates are computed off-line, and the latency information can be derived
from the coordinates directly, the cost of querying the network measurement infrastructure
at runtime is eliminated. A QP can simply use the candidates’ and the targets’ coordinates
to solve the particular optimization problem specified by a user.

3.4.3 Selection Techniques

The NSSD API defined in Section 3.3.1 can be used to specify a wide range of combinations
of constraints and preferences, and these combinations translate into different techniques
for network-sensitive selection. Below we list the selection techniques that are supported
by the prototype Query Processor and used in our evaluation (k denotes the number of
identical servers needed in a solution, andn denotes the number of locally good solutions
needed).
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• “k = 1, n = 1, minimize load” (MLR ): find the server with the lowest load. If there
are multiple servers with the same load, select one randomly.

• “k = 1, n= 1, minimize maximum latency” (MM ): find the server that minimizes the
maximum latency to the specified target(s).

• “k = 1, n = 1, load constraintx, minimize maximum latency” (LCxMM ): among
the servers that satisfy the specified load constraint (load≤ x), find the one that
minimizes the maximum latency to the specified target(s).

• “k= 1,n= 1, minimize load, minimize maximum latency” (MLMM ): find the server
with the lowest load, and use maximum latency as the tiebreaker.

• “k = p, n = 1, minimize average latency” (PMA ): find a set ofp servers and assign
each target to a server so that the average latency between each target and its assigned
server is minimized (i.e., thep-median problem [29]).

• “Random” (R): randomly select a server.

Note that these techniques all return only the best solution. Next, we describe the algo-
rithms we implemented that return the bestn solutions.

3.4.4 Best-n-Solutions

As discussed in Section 3.3.2, we implemented two algorithms for selecting the bestn
solutions.

• “Pure-local”: NSSD sorts the candidates according to the local optimization metric
and then return the bestn. This algorithm is simple but may return candidates that
are “redundant” for the global optimization.

• “Clustering-f ”: In order to avoid redundant candidates and to return those that can
better “represent” the network characteristics of all candidates, we implemented the
clustering-f algorithm (f is theclustering factor) as follows. LetN be the number
of all candidates, andNc = N

f . First, NSSD applies a clustering algorithm to classify
all candidates intoNc clusters based on the GNP coordinates of the candidates. We
use the direct k-means clustering algorithm [3] in our prototype. On the other hand,
NSSD also sorts the candidates using the local optimization metric, and the resulting
list is {c1,c2, . . . ,cN}, wherec1 is the best. Then NSSD selects then candidates in
two phases. (1) Starting withc1, NSSD examines each candidate in the list and selects
a candidate if it belongs to one of theNc clusters from which no other candidate has
been selected. If(n≤ Nc), the second phase is not necessary. (2) If(n > Nc), the
NSSD again starts withc1 and selects each candidate that has not been selected in
the first phase untiln candidates have been selected.
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3.5 Evaluation

We present the results of experiments that quantify how well our NSSD prototype can
support two sample applications. First, we use a multiplayer gaming service to illustrate
the importance of network-sensitive server selection and to show the relative performance
of the different selection mechanisms in our prototype. Next we use the video conferencing
example of Section 3.3.2 to show the trade-offs between local and global optimizations, and
we compare the performance of the two algorithms described in Section 3.4.4. Finally, we
also present the computational overhead of the NSSD prototype.

The experiments for the gaming service scenario are conducted on the PlanetLab wide-
area testbed [106]. The experiments using the video conferencing scenario consist of two
sets of simulations. The first set is based on latency measurement data from the Active
Measurement Project at NLANR [99], and the second is based on data obtained from the
GNP project.

3.5.1 Importance of Network Sensitivity

In the first set of experiments, we look at how network sensitivity can help improve appli-
cation performance. We implemented a simple “simulated” multiplayer game client/server:
a number of game clients join a session hosted by a game server, and every 100ms each
client sends a small UDP packet to the hosting server, which processes the packet, forwards
it to all other participants in the session, and sends an “ACK” packet back to the sender.
Our performance metric for the gaming service is the maximum latency from the server to
all clients since we do not want sessions in which some players are very close to the server
while others experience high latency. Note that the latency metric is measured from the
time that a packet is sent by a client to the time that the ACK from the server is received by
the client.

The goal of this set of experiments is to evaluate the role of network performance in the
server selection process. Therefore, we minimized the computation overhead in the game
server to ensure that the server computation power, including the number of servers, does
not affect game performance. We compare four different scenarios. First, we consider two
scenarios, each of which has 10 distributed servers selected from PlanetLab nodes. The
MM andR techniques are applied in the two scenarios, respectively. For comparison, we
also consider two centralized cluster scenarios,CAM andCMU , each of which has a 3-
server cluster, and a random server is selected for each session. In the CAM scenario, the
cluster is located at the University of Cambridge; in the CMU scenario, the cluster is at
Carnegie Mellon University. The user machines are randomly selected from 50 PlanetLab
nodes.

Figure 3.11 shows the average maximum latency (of 100 sessions) as a function of the
number of participants in each session. MM consistently has the lowest maximum latency,
confirming that network-sensitive service discovery can successfully come up with the best
solution. More specifically, the results illustrate that being able to choose from a set of
distributed servers (MM outperforms CMU and CAM) in a network-sensitive fashion (MM
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Figure 3.11: Central cluster vs. distributed servers in a multiplayer game application.

outperforms R) is a win. Interestingly, having distributed servers is not necessarily better
than a centralized solution. In our case, a centrally located cluster (CMU) outperforms a
distributed network-“insensitive” solution (R).

3.5.2 Different Selection Techniques

While the focus of this paper is not on new selection techniques, we next show how NSSD
can easily support different techniques. We use the simulated game applications to com-
pare the effectiveness of different selection techniques in NSSD. We look at the techniques
MLR , MM , LC3MM , MLMM , andR described in Section 3.4.3. (LC3MM has load con-
straint 3, which means that only servers serving no more than three sessions are eligible.)
Ten nodes at 10 different sites are used as game servers, 50 other nodes are game clients,
and there are four randomly selected participants in each session. There are on average 10
simultaneous sessions at any time, and the server load information in the DA’s database
is updated immediately, i.e., each server’s load value is updated whenever it changes (we
relax this in the next section). We ran measurements for different per-packet processing
overhead, which we controlled by changing the number of iterations of a computationally
expensive loop. The unit of the processing overhead corresponds roughly to 1% of the CPU
when hosting a 4-participant session. For example, on a server that is hosting a single 4-
participant session with 10 units of per-packet processing overhead, the CPU load is about
10%.

Figure 3.12 shows the average maximum latency (of 200 sessions) as a function of
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Figure 3.12: Effect of per-packet processing: average maximum latency.
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Figure 3.13: Effect of per-packet processing: average rank.

the per-packet processing cost. R and MLR have almost identical performance, which is
expected since in this case MLR evenly distributes sessions based on the number of gaming
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Figure 3.14: Cumulative distribution under 15 units per-packet processing.

sessions on each server. MM and LC3MM are also almost identical when the per-packet
processing is low. However, the performance of MM degrades rapidly at higher loads,
while LC3MM remains the best performer throughout this set of experiments.

Figure 3.13 shows the results from a different perspective: it shows the average “rank”
of the five techniques, i.e., for each session, we rank the techniques from 1 to 5 (best to
worst), and we then average over the 200 sessions. We see that although the rank of MM
gets worse for higher loads, it is still better than R and MLR at the highest load, despite
the fact that its average is much worse than those of R and MLR. The reason can be seen
in Figure 3.14, which compares the cumulative distributions of the maximum latency of R,
MM, and LC3MM for the case of 15 units per-packet processing. It shows that MM in fact
makes many good selections, which helps its average rank. However, the 10% really bad
choices (selecting overloaded servers) hurt the average maximum latency significantly. In
contrast, LC3MM consistently makes good selections, which makes it the best performer
both in terms of average maximum latency and rank.

3.5.3 Effect of Load Update Frequency

In the previous set of experiments, the server load information stored in the DA’s database
is always up-to-date, which may not be feasible in practice. We now look at how the load
update frequency affects the performance of the selection techniques. The experimental set
up is the same as that in the previous section, except that we fix the per-packet processing to
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Figure 3.15: Effect of load update frequency: average maximum latency.
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Figure 3.16: Effect of load update frequency: average rank.

15 units and vary the load update interval. The load update interval is defined as the number
of system-wide “load changes” between two consecutive updates of the load information
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Figure 3.17: Cumulative distribution of maximum latency with update interval of 8.

on the DA. Note that load changes include both establishing a new session and terminating
an old session. We experimented with three different update intervals: 1 (i.e., immediate
updates, as in the previous set of experiments), 4, and 8. Since there are on average 10
simultaneous sessions at any time, an update interval of 8 means that when an update
occurs, 40% of the active sessions have been replaced since the previous update.

Figure 3.15 shows the average maximum latency for the different techniques using
different update intervals. Since R and MM are not affected by load, we show the data
from the previous set of experiments for comparison. We see that as the update interval
becomes longer, the performance of both LC3MM and MLMM degrades significantly since
they make decisions based on stale load information. They are worse than R under longer
update intervals. However, in Figure 3.16, LC3MM and MLMM consistently have a better
average rank than R. The reason is that when the load update interval is long, LC3MM and
MLMM occasionally make really bad choices, which greatly affect the average maximum
latency. For example, Figure 3.17 shows that when the update interval is 8, LC3MM and
MLMM outperform R in most of the sessions, but in the worst 10% to 20% of the sessions,
LC3MM and MLMM perform significantly worse than R.

3.5.4 Local Optimization vs. Global Optimization

In this set of experiments, we use NSSD in the video conferencing scenario described
in Section 3.3.2. As depicted in Figure 3.6, we need to find a video conferencing gateway
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(VGW), a handheld proxy (HHP), and a set of ESM proxies. We use the heuristic described
in Section 3.3.2: first, we ask NSSD to select the bestn VGWs using the pure-local algo-
rithm with average latency as the local optimization metric (see Section 3.4.4). Similarly,
we ask NSSD to select the bestm HHPs. For each of thenm VGW/HHP combinations,
we ask NSSD to find the optimal set of ESM proxies using the PMA technique (see Sec-
tion 3.4.3). Finally, we evaluate the resultingnmglobal solutions using Function 3.1 and
select the best one.

Since we are interested in the global optimality (as defined by Function 3.1) of the re-
sulting service instances, we do not need to run the various components on actual machines.
Therefore, our experiments are based on simulations using the latency measurement data
from the NLANR Active Measurement Project [99]. The data consists of round trip time
measurements from each of 130 monitors (mostly located in the U.S.) to all the other mon-
itors. We process the data to generate a latency matrix for 103 sites, and then in the simula-
tions we randomly select nodes from these sites to represent users and various components.
Next, we present the results from three sets of experiments and compare them.

Weighted-5

In the weighted-5 set, we use weights 5.0, 2.0, and 1.0 forW1, W2, andW3, respectively.
We select 40 random nodes as client nodes, 5 random nodes as VGWs, 5 as HHPs, and
5 as ESM proxies (these 4 sets are disjoint). We then generate 100 sessions by selecting
5 participants (2 vic/SDR, 1 handheld, and 2 NetMeeting) from the client nodes for each
session. For each session, we vary the values ofn andm from 1 to 5 and compute the cor-
responding global solutions. This process (node selection/session generation/simulation)
is repeated 20 times, resulting in 20 simulation configurations. The performance metric is
“relative global optimality”, which is defined as the value of Function 3.1 for a solution
divided by the value for the globally optimal solution. For example, a solution with relative
global optimality 1.25 is 25% worse than the globally optimal solution.

Let us first look at all 100 sessions in a typical simulation configuration. We experi-
mented with four different settings for(n,m): (1,1), (2,2), (3,3), and (4,4), and the results
from a typical configuration are plotted in Figure 3.18. For each(n,m) setting, the sessions
are sorted according to their relative global optimality (rank 1 to 100, i.e., best to worst).
When(n,m) is (1,1), we are able to find the globally optimal solution for 27 sessions, and
the worst-case relative global optimality is 1.19. We can see that as we increase the size
of the search space using the best-n-solutions feature of NSSD, we not only increase the
chance of finding the globally optimal solution but also improve the worst-case perfor-
mance. Therefore, the result demonstrates the effectiveness of the hybrid heuristic for the
global optimization problem in coordinated component selection.

Next, we want to look at the results for all sessions in all 20 simulation configurations
using all (n,m) settings. The average relative global optimality result is shown in Fig-
ure 3.19. Each data point is the average of 20 configurations, each of which is the average
of 100 sessions. We decided to present the average (mean) relative global optimality for
each(n,m) setting instead of the median value because as we can see in Figure 3.18, the
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Figure 3.18: Relative global optimality for sessions in a typical weighted-5 configuration.

median value often cannot show the difference in the performance of different settings.
When(n,m) is (1,1), i.e., when we are simply using the combination of locally optimal
solutions as the global solution, the resulting solution is on average 13.7% worse than the
globally optimal solution. When we use (2,2) for(n,m), we are performing an exhaustive
search in 16% of the complete search space, and the resulting solution is 5.3% worse than
the globally optimal solution.

Weighted-25

The weighted-25 setup is the same as weighted-5 above except that we use 25 VGWs, 25
HHPs, and 25 ESM proxies for this set. Figure 3.20 shows the average relative global
optimality for this set of experiments. When we set(n,m) to (1,1) and (10,10), the average
relative global optimality of the resulting solution is 1.279 and 1.035, respectively (i.e.,
27.9% and 3.5% worse than the globally optimal solution).

Unweighted-25

The unweighted-25 set is the same as weighted-25 above except that the weightsW1, W2,
andW3 in the global optimization function (Function 3.1) are all set to 1.0. The average
relative global optimality result is shown in Figure 3.21. When we set(n,m) to (1,1) and
(10,10), the resulting solution is on average 5.9% and 0.1% worse than the globally optimal
solution, respectively.
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Figure 3.19: Relative global optimality for weighted-5.

Comparison

A comparison between weighted-5 and weighted-25 illustrates a few points. First, although
using the combination of locally optimal solutions can greatly reduce the cost of solving
the selection problem, it can lead to bad solutions (in terms of global optimality). Second,
using the best-n-solutions feature of NSSD is effective, as we can significantly improve the
global optimality of the resulting solution by searching in a relatively small space. Third,
the performance at (1,1) seems to degrade as the complete search space becomes larger
(1.137 in weighted-5 and 1.279 in weighted-25). On the other hand, the effectiveness of
the hybrid heuristic seems to increase with the size of the complete search space, e.g.,
when searching only 16% of the complete search space (i.e., when we set(n,m) to (2,2)
and (10,10) in weighted-5 and weighted-25, respectively), the improvement in weighted-25
is greater than in weighted-5 (27.9%→3.5% vs. 13.7%→5.3%).

When comparing weighted-25 with unweighted-25, we see that in unweighted-25, the
performance at (1,1) is much better than that in weighted-25 (1.059 vs. 1.279), and increas-
ing n andm improves the global optimality much faster than it does in weighted-25, e.g.,
5.9%→1.0% vs. 27.9%→12.6% when(n,m) is (4,4). An intuitive explanation of this sig-
nificant difference between the weighted and the unweighted configurations is that, in this
video conferencing example, the unweighted global optimization function is actually quite
close to the sum of the local optimization metrics used to select the individual services. As
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Figure 3.20: Relative global optimality for weighted-25.

a result, a “locally good” candidate is very likely to also be “globally good”. On the other
hand, in the weighted configuration, the global optimality of a solution is less dependent on
the local optimality of each component, and therefore, we need to expand the search space
more to find good global solutions.

To verify this explanation, we look at how likely each particular VGW/HHP combina-
tion results in the globally optimal solution. Specifically, for each of the 2000 sessions, we
look at which VGW/HHP combination (according to their local ranks, e.g., the combination
of the i-th ranked VGW and thej-th ranked HHP) results in the globally optimal solution.
Then we aggregate the results and present, for all 1≤ i ≤ 25 and 1≤ j ≤ 25, the fraction
of time that the combination of thei-th ranked VGW and thej-th ranked HHP results in
the globally optimal solution. Figure 3.22 shows that in unweighted-25, nearly 30% of the
time simply using the best VGW (rank 1) and the best HHP (rank 1) results in the globally
optimal solution. Similarly, about 11% of the time using the 2nd-ranked VGW and the 1st-
ranked HHP results in the globally optimal solution, and so on. In fact, in unweighted-25,
the vast majority of globally optimal solutions involve the best few VGWs and HHPs. On
the other hand, Figure 3.23 shows the results for weighted-25. Although using the com-
bination of the 1st-ranked VGW and the 1st-ranked HHP is still more likely to result in
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Figure 3.21: Relative global optimality for unweighted-25.

the globally optimal solution than any other VGW/HHP combinations, the fraction is now
only 4.3%. Furthermore, the distribution is much more dispersed. Therefore, these results
match our intuition.

3.5.5 Algorithms for Best-n-Solutions

So far we have used the pure-local algorithm for selecting the bestn local candidates. In
this section, we compare the pure-local algorithm with the cluster-f algorithm (see Sec-
tion 3.4.4). The simulations are based on a data set obtained from the GNP project, and the
data set includes the coordinates of 869 Internet nodes. In each simulation, we randomly
select 200 nodes as VGWs, 200 as HHPs, and 200 as ESMPs, and the remaining setup is
the same as that in the previous section. Therefore, using the previous definition, this set
of simulations is called “weighted-200”. We experimented with two values for the clus-
tering factor f : 3 and 10. Therefore, we present results for three algorithms: pure-local,
clustering-3, and clustering-10.

First, Figure 3.24 shows the performance of pure-local in this weighted-200 scenario.
When(n,m) is (1,1) (i.e., using the combination of locally optimal solutions), on average
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Figure 3.22: Fraction of time each VGW/HHP combination is globally optimal (unweigh-
ted-25).

the solution computed by pure-local is 47.3% worse than then globally optimal solution.
When searching 16% of the complete search space (i.e.,(n,m) is (80,80)) using the can-
didates returned by the best-n-solutions functionality, the resulting solution is on average
3.6% worse than the globally optimal one. Comparing this result (47.3%→3.6%) with the
results from the weighted-5 (13.7%→5.3%) and weighted-25 (27.9%→3.5%) scenarios,
we can confirm the trend we observed in the previous section that the effectiveness of the
hybrid heuristic increases with the size of the complete search space.

Now we compare the results of pure-local with clustering-3 and clustering-10. Fig-
ure 3.25 shows the difference between the clustering-3 algorithm and the pure-local al-
gorithm. Each point(n,m) in the graph is computed by subtracting the relative global
optimality (at(n,m)) of the clustering-3 algorithm from that of the pure-local algorithm.
Therefore, for example, if the relative global optimality of pure-local and clustering-3 are
1.16 and 1.10, respectively, then the difference is 0.06. The maximum and minimum values
in the graph are 0.0835 and -0.0015, respectively. The result shows that using clustering-
3 further improves the global optimality of the best-n-solutions approach with the simple
pure-local algorithm. Most of the improvements are in the areas of(2 ≤ n ≤ 32) and
(4≤ m≤ 48). This is expected since clustering-3 divides the candidates into 67 clusters,
so whenn or m is higher than 67, the solutions generated by the two algorithms become
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Figure 3.23: Fraction of time each VGW/HHP combination is globally optimal (weighted-
25).

more and more similar.

Similarly, Figure 3.26 shows the difference between clustering-10 and pure-local. The
maximum and minimum values in the graph are 0.1184 and -0.0016, respectively. The
result shows that the difference between clustering-10 and pure-local is even higher than
that between clustering-3 and pure-local, and most of the improvements are in the areas
of (2≤ n≤ 16) and(2≤ m≤ 32). Again, this is because whenn or m is higher than the
number of clusters (20 for clustering-10), the algorithms become more and more similar.

From Figures 3.25 and 3.26, we see that the location of the area resulting in the most
improvement is directly related to the number of clusters in the algorithm used. Therefore,
we can extrapolate that as we increase the clustering factorf (i.e., decrease the number of
clusters in the algorithm), the area of the most improvement will move closer and closer to
(1,1). In other words, a higher clustering factor will result in more significant performance
improvement for the requests asking for a smaller number of candidates.

In addition, in both graphs we see that the “improvement band” at the lowermvalues is
both wider and higher than that at the lowern values. This is because the local optimization
metric for selecting the HHP is simply the latency to a single target, the handheld user.
Therefore, it is an “easier” optimization problem than the selection of the VGW, which
needs to consider the latencies to two targets. As a result, the clustering-f algorithms can
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Figure 3.24: Relative global optimality of pure-local in weighted-200.

improve the global optimality of the HHP selection better than that of the VGW selection.
Finally, we compare the three algorithms by computing the distributions of the rela-

tive global optimality of all sessions. Figure 3.27 is a summary of the distributions for 3
different (n,m) combinations. It shows the mean and median of each distribution, along
with its 95th-percentile and 5th-percentile values. Both clustering-f algorithms have better
mean, median, and 95-% values than those of pure-local. Between the clustering-f algo-
rithms, whenn andm are low, clustering-10 is clearly better than clustering-3. However,
when(n,m) is (16,16), from Figure 3.25 and Figure 3.26 we know that the effectiveness of
clustering-10 has begun to decrease, while clustering-3 is at its peak effectiveness. There-
fore, we see that clustering-3 has better mean and median values than those of clustering-
10. Interestingly, however, clustering-10 still has a better 95-% value. In other words,
clustering-10 is much better at improving the global optimality of the worst cases. This
is because clustering-10 divides the candidates into fewer clusters (20 compared with 67),
and therefore we need a lowern or m to get to candidates that are worse in terms of the
local optimization metric.

From this result, we can again extrapolate that using a higher clustering factor will
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Figure 3.25: Difference in global optimality between pure-local and clustering-3.

improve the mean/median optimality at lower(n,m) (e.g., lower than (8,8)), and at higher
(n,m) (e.g., higher than (8,8)) although the mean/median may become slightly worse than
that resulting from a lower clustering factor, a higher clustering factor is likely to improve
the optimality of the worst cases.

3.5.6 NSSD Overhead

We used the ESM scenario of Figure 3.2 to evaluate the overhead of the NSSD imple-
mentation. We register 12 ESM proxies (and 24 other services) with NSSD. Each query
asks NSSD to select three ESM proxies for four random participants while minimizing the
average latency between each participant and its assigned ESM proxy. The queries are gen-
erated using a Perl script and sent (through a FIFO) to another process that uses the SLP
API to send the queries to the service directory. The replies flow in the reverse direction
back to the Perl script. All the processes are running on a single desktop machine with a
Pentium III 933MHz CPU and 256MB of RAM.

We measure the total time of generating and processing 4000 back-to-back queries, and
the average (over 10 runs) is 5.57 seconds (with standard deviation 0.032), which shows
that in this set up NSSD can process roughly 718 queries per second. We believe this is a
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Figure 3.26: Difference in global optimality between pure-local and clustering-10.

reasonable number given the complexity of selecting the ESM proxies and the fact that the
time also includes the overhead of query generation and IPC.

3.6 Related Work

There have been many proposals for service discovery infrastructures. For example, Ser-
vice Location Protocol [61], Service Discovery Service [27], and Java-based Jini [79]. A
distributed hashing-based content discovery system such as [51] can also provide service
discovery functionality. These general service discovery infrastructures only support ser-
vice lookup based on functional properties, not network properties. Naming-based ap-
proaches for routing client requests to appropriate servers can also provide service dis-
covery functionality. Application-layer anycasting [136] performs server selection during
anycast domain name resolution. In TRIAD [58], requests are routed according to the de-
sired content and routing metrics. The Intentional Naming System [2] resolves intentional
names, which are based on attribute-value pairs, and routes requests accordingly. Active
Names [126] allows clients and service providers to customize how resolvers perform name
resolution. NSSD can potentially be built on top of the service discovery and server selec-
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Figure 3.27: Distributions of relative global optimality.

tion mechanisms in these approaches.

An important part of NSSD is the network measurement infrastructure, which provides
estimates of network properties such as latency between hosts. A number of research efforts
focus on such an infrastructure. For example, in IDMaps [46], the distance between two
hosts is estimated as the distance from the hosts to their nearest “tracers” plus the distance
between the tracers. GNP [97] uses a coordinates-based approach. Remos [59] defines and
implements an API for providing network information to network-aware applications.

Many network-sensitive server selection techniques have been studied before. For ex-
ample, in [12] a number of probing techniques are proposed for dynamic server selection.
Client clustering using BGP routing information [83] or passive monitoring [4] has been
applied to server selection. Similarly, distributed binning [114] can be used to identify
nodes with similar network properties. In SPAND [116], server selection is based on pas-
sive monitoring of application traffic. The effectiveness of DNS-based server selection is
studied in [117]. Network-layer anycast [105] handles network-sensitive selection at the
routing layer. The Smart Client architecture [135] uses a service-specific applet to per-
form server selection for a user (primarily for load-balancing and fault-transparency). The
performance of various selection techniques is evaluated in [63] and [36]. These studies
provide new ways of collecting and using network information for server selection and are
complementary to our work. Some other efforts address the problem of request distribution
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in a server cluster, for example, [45] and [104]. They are also complementary to NSSD
since all nodes within the same cluster have similar network properties.

In the context of computational Grids, researchers have also been working on the re-
source/service discovery and selection problems. The Metacomputing Directory Service
(MDS) [41, 25] implements the Grid information service architecture [25] that defines data
models, mechanisms, and protocols for Grid applications to access both resource character-
istics and network performance information. A resource selection framework is proposed to
provide user-side resource selection functionality using information provided by MDS [87].
Another hierarchical service discovery framework [134] extends SDS by incorporating user
preference feedback into service selection. The Remos network monitoring/measurement
infrastructure can be used by applications to perform network-sensitive service selection
in a Grid environment [59]. In fact, these previous efforts provide the building blocks for
realizing network-sensitive service discovery in a Grid environment: in the Grid informa-
tion service architecture, the NSSD functionalities can be built into a specializedaggregate
directory servicethat extracts and combines information from both “service information
providers” (e.g., a traditional service directory) and “monitoring information providers”
(e.g., Remos). Through the NSSD API, this directory can provide useful information for
self-configuring services and other adaptive applications in a computational Grid.

3.7 Chapter summary

In this chapter, we described the architecture and implementation of the Network-Sensitive
Service Discovery (NSSD) infrastructure. NSSD integrates the functionalities of traditional
service discovery and network-sensitive server selection and allows users to benefit from
network-sensitive selection without having to implement their own selection mechanisms.
It also does not require providers to expose all their server information to users. We defined
the NSSD API that supports service lookups based on both functional and network proper-
ties required by users. For coordinated selection of multiple components, we designed the
hybrid heuristic that performs global optimization on a reduced search space. NSSD sup-
ports the hybrid heuristic by providing additional information through the best-n-solutions
feature.

In the context of self-configuring services, the self-configuration module is a “user”
of NSSD. The local optimization techniques supported by NSSD can be used to perform
the common self-configuration operation of single component selection based on service-
specific network performance criteria. For self-configuring services where coordinated
selection of multiple components is necessary, a self-configuration module can apply the
hybrid heuristic using the best-n-solutions feature of NSSD to approximate the desired
global optimization.

In our evaluation, we show that our prototype implementation of NSSD has reason-
ably good query processing performance. Experimental results of the multiplayer online
gaming service show that by using the local optimization functionality provided by NSSD,
the simulated service can achieve significant performance improvements. Simulation re-
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sults for coordinated selection of multiple components in the video conferencing scenario
demonstrate that the flexibility of the best-n-solutions feature allows a user to perform
global optimization in a reduced search space and greatly improve the performance of the
resulting solution.



Chapter 4

Synthesizer And Recipe Representation

The key element in our recipe-based self-configuration architecture is thesynthesizer, which
plays the role of self-configuration module. To build a self-configuring service, a service
provider transforms its service-specific self-configuration knowledge into arecipeusing
the recipe representationexported by the synthesizer. The recipe is submitted to the syn-
thesizer and is used by the synthesizer to guide the self-configuration operations. As dis-
cussed earlier, the synthesizer performs two types of self-configuration operations,global
configurationandlocal adaptation. In this chapter, we discuss the definition of the recipe
representation and the design and implementation of the synthesizer to support global con-
figuration. In the next chapter, we extend the recipe representation and the synthesizer to
support local adaptation.

The remainder of this chapter is organized as follows. In the next section, we give a
high-level overview of the synthesizer architecture. In Section 4.2, we define the recipe
representation as a set of APIs that can be used by service providers to design their service
recipes. A service recipe contains a service provider’s service-specific knowledge in two
aspects of self-configuration, abstract mapping and physical mapping. We then look at
the synthesizer design in Section 4.3 and focus on how the synthesizer solves the physical
mapping problem. We discuss how the complexity of the problem depends on the objective
function and describe optimization algorithms for solving different problems. We also
discuss how the synthesizer can select the appropriate algorithm according to a provider’s
cost and optimality constraints. We describe our prototype implementation in Section 4.4
and present our evaluation results in Section 4.5.

4.1 Overview of the synthesizer architecture

Figure 4.1 presents an overview of the synthesizer architecture. Aservice recipeis written
by a service provider and contains an operational description of the service-specific knowl-
edge. Thesynthesizerplays the role of the self-configuration module and consists of two
modules. Thefacility moduleimplements the generic infrastructure knowledge that is com-
mon and reusable for different services. Thefacility interfaceexports the facility module

67
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Figure 4.1: Synthesizer architecture.

functionalities in the forms of APIs and libraries that can be used by service providers to
write their recipes. Theinterpreter moduleexecutes a recipe submitted by a provider to
compose a global configuration for each user request.

To build a self-configuring service, the service provider gives the recipe to the syn-
thesizer. At run time, a user can send a request to the synthesizer specifying the user
requirements. For example, in a video conferencing scenario, a user request specifies the
IP addresses and conferencing applications of the participants. When the synthesizer re-
ceives the request, it extracts the user requirements from the request, and the interpreter
module access the functionalities provided by the facility module to compose an optimal
global configuration for the request according to the recipe.

Note that the previous generic and service-specific approaches can be viewed as two
extreme cases of this architecture. In the generic approach, the “recipe” is an abstract spec-
ification containing only the highest-level service-specific knowledge, e.g., the required
input type. All other tasks are automatically performed by the generic “synthesizer” using
only generic self-configuration knowledge. On the other hand, the “recipe” in the service-
specific approach is in fact a service-specific self-configuration module that takes the place
of the synthesizer. Implementing such a monolithic module requires extra efforts from the
provider who may not have the necessary infrastructure knowledge.

In contrast, in our approach, service providers design their recipes using a general-
purpose programming language, e.g., Java is used in our prototype. On one hand, this
provides a much richer and more flexible representation of service-specific knowledge than
the representation in the generic approach, and therefore, it allows providers to specify a
much broader range of service-specific knowledge than the input/output types, for example.
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Figure 4.2: A video streaming service.

On the other hand, since only the service-specific knowledge needs to be encoded into the
recipe, service providers do not have to worry about the generic infrastructure knowledge,
making this recipe representation much easier to use (i.e., requiring much less efforts) than
the “representation” in the service-specific approach. Note that the synthesizer can take
the form of a toolkit/library that can be used by service providers to build self-configuring
services, or it can also be a standalone entity whereby a provider builds a self-configuring
service by submitting a recipe to the synthesizer.

In the next two sections, we discuss how we define the recipe representation for speci-
fying the different aspects of the service-specific knowledge and how the synthesizer uses
such knowledge to perform global configuration.

4.2 Recipe representation

To define the recipe representation, we first look at some self-configuring service examples
to identify the knowledge required for global configuration.

4.2.1 Self-configuring service examples

First, let us consider the self-configuring video streaming service example from Chapter 1,
shown in Figure 4.2. There are two pieces of service-specific knowledge in this scenario.
First, for a user who requests a low-bitrate MPEG-4 video stream, the global configuration
should be a combination of an MPEG-2 server and an MPEG-2-to-MPEG-4 transcoder.
Secondly, the provider’s goal is to minimize the network resource consumption. Therefore,
among the many candidates for MPEG-2 server and MPEG-2-to-MPEG-4 transcoder, the
provider’s objective for component selection is to select the pair of server and transcoder
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Figure 4.3: An interactive search service.

that minimizes the bitrate-weighted network distance represented by the objective in the
figure.

Another example is the self-configuring interactive search service shown in Figure 4.3
that supports application-specific filtering, similar to the Diamond system [72]. A user
wants to find a particular picture from an image collection distributed across three storage
servers. For efficiency, this service allows the user to upload application-specific filters,
e.g., “blue with water-like texture”, to the servers so that irrelevant pictures can be dis-
carded early to reduce the bandwidth consumption. The service provider’s service-specific
knowledge dictates that if a storage server does not have sufficient computation resources
to handle the application-specific filters, a computation proxy can be used to run the filters
in front of the server. Furthermore, to reduce the overall communication time, the selection
of the computation proxies should minimize the objective shown in the figure.

Finally, let us revisit the video conferencing service example from Chapter 2, shown
in Figure 4.4. Five users want to hold a video conference: P1 and P2 have MBone con-
ferencing applications vic/SDR (VIC), P3 and P4 use NetMeeting (NM), and P5 uses a
receive-only handheld device (HH). The service provider’s service-specific knowledge in-
dicates that a configuration supporting these users can be composed as follows. A video
conferencing gateway (VGW) is needed for protocol translation and video forwarding be-
tween VIC and NM users. A handheld proxy (HHP) is needed to join the conference for P5.
An End System Multicast (ESM) [23] overlay consisting of three ESM proxies (ESMPs)
can be used to enable wide-area multicast among P1, P2, VGW, and HHP, Furthermore,
to reduce the network resource usage, the necessary components in the global configura-
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Figure 4.4: A video conferencing service.

tion should be selected such that the objective function shown in the figure is minimized.
The variables in the objective function are network latencies, and the weights reflect the
bandwidth usage of different conferencing applications, e.g., NetMeeting only receives
one video stream, and the handheld cannot receive all streams.

From these examples, we can see a common theme in the process of composing a global
configuration. First, it requires some service-specific knowledge to determine the types of
components needed to serve a particular request. It then needs some service-specific criteria
for selecting an actual component for each of the required component types. Therefore,
we divide the global configuration process into two steps:abstract mappingandphysical
mapping, This division is similar to a number of previous self-configuration frameworks,
for example, [57, 115, 109, 48, 75, 60].

As shown in Figure 4.5, in the abstract mapping step, the synthesizer generates anab-
stract configurationthat specifies what types of components are needed to satisfy a request,
for example, VGW, HHP, and ESMP in the video conferencing scenario. Then the synthe-
sizer performs physical mapping to generate aphysical configurationthat maps eachab-
stract componentin the abstract configuration to aphysical componentin the network, for
example, abstract component VGW is mapped to the physical component with IP address
192.168.1.1, HHP is mapped to 192.168.2.2, and so on.

To allow service providers to specify the service-specific mapping knowledge, one de-
sign decision we need to make is what type of “language” should be used for the speci-
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Figure 4.5: Abstract mapping and physical mapping.

fication. There has been a large body of work on the design of Architecture Description
Languages (ADLs) (e.g., Acme [53]) that can be used to formally describe the architec-
ture of a component-based system, which is roughly equivalent to our definition of abstract
configuration. These ADLs allow the specification of components and connectors and how
they fit together in the system. Therefore, a natural question is: can we use such languages
for our purpose, or do we need a language that is closer to a general-purpose programming
language with, for example, control flow features?

For the purpose of specifying the mapping knowledge, the main difference between
using a more restricted “specification language” such as an ADL and using something
closer to a general-purpose “programming language” is that such a specification language
is designed for specifyinga configurationwhile a programming language can be used to
describe theprocess of constructing a configuration. One advantage of using a restricted
specification language is that it requires less efforts from the service provider, and formal
analysis or verification can be applied more easily. However, as we see in earlier examples,
the actual configuration very often depends on the particular user requirements in the target
request. In other words, the provider must be able to specify how to construct a configu-
ration instead of specifying a particular configuration instance. As a result, when manip-
ulation of the architecture is required, previous work has extended the notion of ADLs to
include features such as control flow from general-purpose programming languages. For
example, Rainbow [19] extends the Acme ADL to allow the specification of adaptation
strategies and tactics that can diagnose run-time problems and adapt the configuration ac-
cordingly. An architecture reconfiguration language is proposed in [131] that allows the
manipulation of the configuration. Such languages are close to general-purpose program-
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ming languages in terms of the features they provide, and they are more suitable for our
purpose than a restricted specification language.

Since the focus of this dissertation is on what service-specific knowledge should be
abstracted and how the abstracted knowledge is used for self-configuration, we do not ad-
dress specific language design issues. Therefore, we use a general-purpose programming
language, Java [81], for specifying the service-specific knowledge in our proof-of-concept
prototype. The recipe representation is defined as a set of APIs that can be used by providers
to write their recipes. In practice, if a language similar to those in [19, 131] is adopted for
the specification, our representation can be transformed into new features of the language.
Even if a restricted specification language is to be used, most of the required functionalities
we have identified in our APIs will still be applicable.

We now discuss how we define the recipe representation to capture the service-specific
abstract mapping and physical mapping knowledge in a general way.

4.2.2 Abstract mapping knowledge

An abstract configuration is basically a “graph” consisting of nodes representing the types
of components needed, i.e.,abstract components, and links representing the connections
between the abstract components. In other words, in the abstract mapping step, the syn-
thesizer needs to generate a data structure that represents such a graph. Although the
knowledge of what types of components are needed and how they are connected is service-
specific, the task of constructing and maintaining the data structure is generic across differ-
ent services. Therefore, service providers should be able to specify how the abstract con-
figuration should be constructed in a generic fashion, i.e., they should not have to design
their own service-specific data structures and functions to handle abstract configurations.

To support the construction and maintenance of abstract configurations, the facility
module of the synthesizer exports an abstract configuration API that provides generic data
structures and functions through the facility interface. A service provider can use these data
structures and functions in its recipe to construct and manipulate the abstract configuration.
Figure 4.6 lists the major data structures and functions that are made available to service
providers through the facility interface. The data structures represent the abstract confi-
guration and the nodes in the configuration.AbsComprepresents an abstract component,
i.e., it specifies a required component type;PhyCompis a physical component, i.e., a fixed
node in the abstract configuration, for example, the video conferencing participants in the
video conferencing service, the user and servers in the interactive search service, and so on.
The functions listed are used to manipulate these data structures.

We now use the video conferencing service example to illustrate how the service-
specific abstract mapping knowledge can be expressed in a recipe using this API. Figure 4.7
shows that the abstract mapping knowledge for this service can be roughly divided into
three pieces: (1) a VGW should be connected to all participants who use NetMeeting, (2)
an HHP should be used for each handheld participant, and (3) an ESM overlay consisting
of three ESMPs should be used to provide multicast among VIC users, VGW, and HHPs.
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Data structure
AbsConf Represent abstract configurations; contains components and connec-

tions.
AbsComp Represent abstract components; contains component properties (also

sub-components, if any).
PhyComp Represent physical components (i.e., fixed nodes such as the users);

contains component properties.

Function
addComp(spec) Add an abstract component with the given specifica-

tionsspec to the abstract configuration.
addConn(c1,c2) Add a connection between components c1 and c2 to

the abstract configuration.
addSubComp(n,spec) Add n identical sub-components (withspec ) to a

component in the abstract configuration.
getProperty(prop) Get the value of the property namedprop of a com-

ponent in the abstract configuration.

Figure 4.6: Abstract configuration API.

Figure 4.7: Abstract mapping knowledge for the video conferencing service.

Figure 4.8 shows a recipe that expresses the above abstract mapping knowledge using
the abstract configuration API. The recipe shown is written in the Java programming lan-
guage, which is used in our prototype. The three segments of the recipe correspond to the
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Figure 4.8: A video conferencing recipe: abstract mapping.

three pieces of knowledge above. Basically, an empty configuration is initialized first, and
then the needed components are inserted into the configuration and are connected to the
appropriate nodes. Note thatparticipants is the list of participants (specifically, a
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List of PhyCompobjects) extracted from a user request by the synthesizer and is used
as an input during the execution of the recipe. For simplicity, we use “symbolic names” to
represent complete specifications of component type and attributes, for example, “VGW”
represents “(serviceType = VideoGateway) (protocols = H323,SIP)...”.

Given this recipe, generating an abstract configuration is straightforward. When a user
request is received, the interpreter module of the synthesizer executes the recipe to construct
the data structureconf that represents the abstract configuration.

4.2.3 Physical mapping knowledge

After generating an abstract configuration, the synthesizer needs to perform physical map-
ping, i.e., the synthesizer needs to generate a physical configuration that maps each of the
abstract components in the abstract configuration to a physical component. In particular,
the selection of the physical components is based on some service-specific criteria. From
the examples in Section 4.2.1, we see that the component selection problem can generally
be formulated as an optimization problem in which the component selection criteria is rep-
resented as anobjective functionthat needs to be optimized. Therefore, the task of physical
mapping can be divided into three steps: identifying the objective function, formulating the
optimization problem, and solving the problem.

An important observation is that while the optimization objective is is part of a service
provider’s service-specific knowledge, the provider may not have the expertise to formu-
late and solve optimization problems. Moreover, these latter two steps are in fact relatively
generic, i.e., problem formulation techniques and optimization algorithms for solving the
problems can often be reused for different services. Therefore, the key service-specific
knowledge for physical mapping is the objective function for component selection, and the
synthesizer should provide an API that allows a service provider to specify such an ob-
jective function. Given the objective function and the abstract configuration generated in
the abstract mapping step, the synthesizer can then formulate and solve the optimization
problem of component selection. In this section, we focus on the API for specifying ob-
jective functions, and in Section 4.3, we discuss how the synthesizer performs component
selection.

An objective function is a function in which each term is ametric or a function of
multiple metrics. Metrics represent properties of components or properties of connections
between components. For example, the objective function for the video streaming service
in Figure 4.2 has two metric terms, the latency between the server and the transcoder and
the latency between the transcoder and the user. The metrics in the objective function
in Figure 4.3 are the available bandwidths on the different connections. The metrics for
the video conferencing service in Figure 4.4 are the latencies on the connections between
components and participants.

In order to optimize component selection according to an objective function, the synthe-
sizer must be able to obtain the values of all metrics in the objective function. For example,
given the objective function for the video streaming service, the synthesizer needs to ac-
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Data structure
LatencyM Represent the network latency between two components.
BandwidthM Represent the available bandwidth between two components.
Function Represent an objective function; contains aTerm.
Term Contain either a metric or a floating point number; also pro-

vides member functions listed below for appending other in-
stances ofTerm to “this” instance.

Function (member functions ofTerm)
add(t) Add t (an instance ofTerm) to “this” instance.
subtract(t) Subtractt from this instance.
multiplyBy(t) Multiply this instance byt .
divideBy(t) Divide this instance byt .
pow(t) Raise this instance to thet -th power.

Figure 4.9: Objective function API.

cess a network measurement infrastructure that can provide latency information between
the streaming server candidates and the transcoder candidates and between the transcoder
candidates and the user. Therefore, what metrics can be used in objective functions depend
on what are provided by the supporting infrastructures. In our current prototype, we define
two metrics that can be used in objective functions:LatencyM andBandwidthM , repre-
senting the network latency and the available bandwidth between two nodes, respectively.
Other important metrics such as CPU speed, memory size, cost, and so on can be added by
extending the supporting infrastructures to provide these properties.

Given a set of metrics, we define an API for constructing objective functions that con-
sists of the data structures and functions shown in Figure 4.9. Note that since our prototype
uses the Java programming language, all the data structures are defined as classes. All
functions listed are member functions of theTerm class, e.g., ifA andB are both instances
of Term and representa andb, respectively, then after callingA.add(B) , A represents
(a+ b). To summarize, this interface can be used to construct a tree-like data structure
representing the objective function. This tree can then be traversed to evaluate the value
of the function given a particular selection of components. This API is fairly general and
allows a service provider to construct non-trivial objective functions in recipes.

As an example, we show how the objective function for the video conferencing service
in Figure 4.4 is constructed in the video conferencing service recipe. As we can see in
Figure 4.10, the objective function is basically a weighted sum of three partial objectives:
(1) the sum of the latencies between the VGW and the NM users, (2) the sum of the latencies
between HH users and their corresponding HHPs, and (3) the sum of the latencies between
the ESMPs and the multicast end points.

Figure 4.11 shows a recipe that constructs this service-specific objective function using
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Figure 4.10: Physical mapping knowledge for the video conferencing service.

the objective function API above. The unshaded lines in the recipe are unchanged from
Figure 4.8 and represent the abstract mapping knowledge. The shaded lines construct the
objective function, and the three segments of the recipe construct the three partial objec-
tives, respectively. These partial objectives are added together in the termobj , which is
finally used to construct the functionobjfunc .

To summarize, in this section, we present a recipe representation that allows service
providers to express their service-specific abstract mapping and physical mapping knowl-
edge in a recipe. In the next section, we describe how the synthesizer finds the optimal
global configuration for each user request using such knowledge.

4.3 Synthesizer

As described in the previous section, the synthesizer needs to perform two tasks, abstract
mapping and physical mapping, to find the optimal global configuration for a user request.
When a user request is received, the interpreter module of the synthesizer executes the
recipe with the user requirements extracted from the request. During the execution of the
recipe, anAbsConf data structure is constructed that represents the abstract configuration,
and aFunction data structure is constructed that represents the objective function, i.e.,
the abstract mapping step is performed during the execution of the recipe. On the other
hand, for physical mapping, given the generated objective function, the synthesizer still
needs to formulate and solve an optimization problem in order to select the best candidates
for the needed components. Therefore, we focus on how the synthesizer formulates and
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Figure 4.11: A video conferencing recipe: abstract and physical mappings.

solves the optimization problem of physical mapping given the generated abstract confi-
guration and objective function. Let us first discuss the complexity of such problems and
review algorithms for solving them.



80 CHAPTER 4. SYNTHESIZER AND RECIPE REPRESENTATION

4.3.1 Complexity and algorithms

In general, the synthesizer cannot simply select each component independently. For ex-
ample, if the objective function includes a single metricM(c1,c2) wherec1 and c2 are
abstract components withn candidates each, then the selection ofc1 dependson that ofc2,
i.e., the synthesizer needs to select them together by searching throughn2 possible com-
binations to find the optimal selection. Furthermore, this dependency istransitive, e.g.,
if the objective isM1(c1,c2)+ M2(c2,c3), then all three components are mutually depen-
dent. In addition, some physical mapping problems involvesemi-dependentcomponents,
e.g., inM1(c1,c2) + M2(c2), c2 is semi-dependent, i.e., independent in the second term
but dependent onc1 in the first term. Similarly, VGW and HHP in Figure 4.4 are both
semi-dependent.

If some or all components are mutually dependent, physical mapping is aglobal op-
timizationproblem with a worst-case problem size ofnm wherem is the number of ab-
stract components. If every abstract component is independent, e.g., if the objective is
M1(c1)+M2(c2)+ . . .+Mm(cm), physical mapping becomes a series oflocal optimization
problems with a total problem size ofmn. Since solving local optimization problems is
more straightforward, here we focus on how to solve the more general physical mapping
problems involving global optimization.

There are many techniques that can be used to solve a general physical mapping prob-
lem. One possibility is to use a general optimization algorithm that can solve generic op-
timization problems. For example,exhaustive searchsolves any optimization problems by
enumerating all possible solutions in the problem space. An optimization problem can also
be solved using thesimulated annealingheuristic based on the physical process of anneal-
ing [66], which only searches in a small part of the problem space. One issue with using
such general algorithms is that they may not be efficient for the particular target problem.
For example, the optimization cost of exhaustive search grows linearly with the problem
size, which can be huge for global optimization problems. Simulated annealing may not be
able to find good solutions if the parameters are not optimally tuned.

Another possible technique is to use some heuristics that take advantage of the “struc-
ture” of the physical mapping problem to reduce the problem size. The hybrid heuristic
described in Chapter 3 is an example of this technique: it reduces the size of a global op-
timization problem by selecting a small number of candidates using a local optimization
objective and then uses a general optimization algorithm to solve the reduced global opti-
mization problem. From the discussion of complexity above, we can see that the hybrid
heuristic can be easily applied to physical mapping problems that involve semi-dependent
components by using the independent metric as the local optimization objective for each
semi-dependent component. As demonstrated by the simulation results in Chapter 3, this
approach is effective since the local optimization objectives are actually parts of the global
objective, and therefore, the locally good candidates are likely to be also globally good.
However, if components in the target physical mapping problem all depend on one another,
the effectiveness of the hybrid heuristic may be limited since it may not be clear what local
optimization objective can be used for each component.
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Finally, for physical mapping problems that have a particular structure, there may be
specialized algorithms developed previously that can solve such special problems more ef-
ficiently than general optimization algorithms. For example, to map components to nodes
along a selected route with the objective of maximizing the overall throughput, a dynamic
programming algorithm is used in [48]. Choi et al. uses a shortest-path algorithm on a trans-
formed network graph to select intermediate processing sites between two end points [21].
Gu and Nahrstedt uses a shortest-path algorithm to find a service path that minimizes the
resource usage [60]. The Matchmaking framework [112] maps a computation task to an
appropriate resource that optimizes user-specified criteria. Extending the Matchmaking
framework, Liu et al. [87] and Raman et al. [113] propose a number of heuristic algorithms
to solve the multi-resource and the resource co-allocation problems, respectively. In the
ESM example in Figure 3.2 from Chapter 3, the problem of selecting ESMPs to minimize
the sum of latencies can be formulated into ap-median problem [29], and many previous
studies have presented algorithms for solving this and other variations of the facility lo-
cation problem [31], for example, [118, 110]. Many of these algorithms are approximate
algorithms, and therefore, they are much more efficient than generic algorithms, and they
often provide theoretical bounds on optimality.

4.3.2 Algorithm selection

The algorithms discussed in the previous section are suitable under different circumstances.
Therefore, for each physical mapping problem, the synthesizer needs to select the most
appropriate algorithm. Ideally, when solving a physical mapping problem, the synthesizer
should be able to select the best optimization algorithm automatically since the service
provider may not be an optimization expert and does not know the properties of different
algorithms well enough to specify which algorithm should be used.

The best choice of optimization technique depends on two major factors. The first
is the properties of the problem itself, for example, when the problem size is small, an
expensive algorithm can be used to achieve better optimality. Similarly, specialized algo-
rithms can be used for problems of particular forms. For example, path-based component
selection can be performed using variations of the shortest-path algorithm, problems with
semi-dependent components can use the hybrid heuristic, and so on. These properties are
not service-specific and can be analyzed by the synthesizer automatically to choose an al-
gorithm. For example, using the video conferencing recipe, the synthesizer generates an
abstract configuration and an objective function. By looking at the number of candidates for
each component, the synthesizer can determine the problem size and estimate the feasibil-
ity of using an expensive algorithm such as exhaustive search. In addition, the synthesizer
can also analyze the objective function and discover that the mapping problem involves
semi-dependent components. Therefore, the hybrid heuristic algorithm can be used.

The second factor is the desired trade-off between the optimality of the resulting con-
figuration and the cost of optimization. The optimality is measured by comparing the con-
figuration produced by an algorithm with the actual optimal configuration. The cost is
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basically the computation time required to perform the optimization, given the particular
synthesizer implementation. The desired trade-off for each service is service-specific and
is determined by the provider. For example, a provider may have a constraint of 2 seconds
per request on the maximum optimization cost, but it may not require near-optimal config-
urations. Another provider may want the composed configuration for every request to be at
most 20% worse than the actual optimal solution. To use the service-specific trade-off for
algorithm selection, the synthesizer needs to allow a service provider to specify the desired
trade-off between optimization cost and optimality. This can be achieved by providing the
following simple API for specifying the trade-off in a service recipe.

setAlgCostConstraint(CostSpec maxCost);
setAlgOptimalityConstraint(OptSpec minOptimality);

Using this interface, providers can specify two constraints in their recipes: the maximum
optimization cost and the minimum optimality of the resulting configuration. In general, it
is difficult to obtain the exact optimality property (and, to a lesser degree, the cost property)
of an optimization algorithm relative to the actual optimum. Therefore, the synthesizer may
not be able to guarantee that the constraints will be met. In other words, the constraints
serve as guidelines for algorithm selection, and the synthesizer selects an algorithm that, to
the best of its knowledge, can satisfy the provider’s constraints.

Now that we have discussed what information is necessary for the synthesizer to per-
form algorithm selection (i.e., properties of the mapping problem and the desired trade-off),
let us look at how the synthesizer uses such information to select the best algorithm. First,
we define the following notations.

• F is the objective function for the physical mapping problem.

• A = {a1,a2, . . . ,an} is the set of built-in optimization algorithms of the synthesizer.

• For eachai , C(ai ,s) is the average optimization cost ofai when the problem size iss.
As discussed above, the cost refers to the optimization time ofai given the particular
synthesizer implementation.

• For eachai , P(ai ,s) is the average optimality ofai when the problem size iss, i.e.,
how much worseai is than the actual optimum. For example, ifP(ai ,s) is 1.3, then
when the problem size iss, the solution produced byai is on average 30% worse than
the actual optimum. As discussed above, it is in general difficult to obtain a function
P() that provides the exact optimality property. Later we discuss how a synthesizer
can obtain estimates of the optimality property.

• To andTc represent the optimality and cost constraints specified in the recipe by the
provider, respectively. For example, ifTo is 1.3, it means that the provider needs
solutions that are at most 30% worse than the actual optimum.

Given these notations, the algorithm selection process can be divided into the following
five steps.
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• Determining eligible algorithms: General optimization algorithms such as simu-
lated annealing can be applied to all mapping problems, but specialized algorithms
only apply to special cases. In this step, the synthesizer analyzesF to determine what
algorithms can be used. For example, if there are semi-dependent components inF ,
the Hybrid and HybridSA algorithms described earlier become eligible. IfF is of a
form that can be formulated into thep-median problem, then a special algorithm can
be used, for example, the approximate algorithm in [18].

One issue that needs to be addressed is that it is difficult to define a general way to
express the required features inF for a particular specialized algorithm. For example,
for Hybrid/HybridSA, it needs to express “components with both dependent and in-
dependent metrics”. For thep-median problem, the required features are completely
different. One possible solution to this issue is to implement every specialized al-
gorithm as a “plugin” to the synthesizer, and each plugin also includes the logic for
determining whether a particular objective function can be formulated into the special
problem that can be handled by the corresponding algorithm.

After examining all algorithms, e.g., by invoking the eligibility determination logic
in each plugin, the synthesizer has a set of eligible algorithmsA′ ⊆ A. Note that if a
particular specialized algorithm is clearly superior than other built-in algorithms, the
corresponding plugin can also instruct the synthesizer to skip the three steps below
and simply select the algorithm.

• Determining problem size: To determine the problem size, the synthesizer looks at
the number of candidates of each required component. Based on howF is formed,
the synthesizer can then calculate the problem sizeS. For example, ifF requires
three components to be selected together, and each component hasm candidates,
thenS= m3.

• Applying cost constraint: The synthesizer finds a set of algorithmsA1 such that
A1 ⊆ A′ and for alla∈ A1, C(a,S)≤ Tc.

• Applying optimality constraint : The synthesizer finds a set of algorithmsA2 such
thatA2 ⊆ A1 and for alla∈ A2, P(a,S)≤ To.

• Selecting an algorithm: After the above four steps, ifA2 contains a single algorithm
a, the synthesizer will usea to solve the optimization problem. IfA2 contains more
than one algorithm, any of them can satisfy both the cost and optimality constraints
specified by the provider. Therefore, the synthesizer can use any algorithm inA2

to perform the optimization. For example, the synthesizer can select the one with
the lowest cost. However, ifA2 is empty, it means that none of the synthesizer’s
built-in algorithms can satisfy both constraints. One possible approach in this case
is that the synthesizer can select an algorithm whose properties are closest to the
constraints, for example, by relaxing the constraints and repeating the steps above.
Another possibility is that the synthesizer can notify the provider so that the provider
can relax the constraints.
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Given the above algorithm selection process, one remaining question that needs to be
addressed is how does the synthesizer obtain the functionsP() andC(), which represent the
optimality and cost properties of the built-in algorithms, respectively? Below we outline
two possible approaches.

• Offline: The properties of the built-in algorithms can be collected offline, i.e., before
the synthesizer becomes operational and starts handling user requests. For exam-
ple, the synthesizer can use simulated requests to measure the optimality and cost
of the built-in algorithms at different problem sizes. Such data can then be used to
estimate the cost and optimality when the synthesizer is handling real requests. Of
course, for some algorithms, the cost and optimality properties depend a lot on the
actual optimization problem, for example, how many variables are there in the ob-
jective function, etc. Therefore, the cost and optimality data needs to be collected
specifically for the service that the synthesizer is handling.

• Online: Another possibility is that the synthesizer can “learn” about the cost and
optimality properties of the built-in algorithms from the experiences of handling ac-
tual user requests. I.e., after handling some user requests using different optimization
algorithms, the synthesizer will have accumulated some cost and optimality data sim-
ilar to those collected using the offline method above. Such data can then be used
to guide the algorithm selection process for later requests. One problem with this
approach is that the synthesizer cannot handle the initial requests well since it does
not have enough data to know which algorithm is the best.

Of course, it is also possible to combine the two approaches. For example, the offline
method can be used to obtain some baseline data that can be used by the synthesizer to
handle the initial user requests. After the synthesizer has handled a sufficient number of
requests, the online data can then be used to improve the baseline estimates.

Later in Section 4.5, we use the video conferencing service as an example to illustrate
how to collect the cost and optimality data using the offline method and how to use such
data to perform algorithm selection as described above.

4.4 Implementation

We have implemented the synthesizer, including the facility and interpreter modules, in
the Java programming language to take advantage of the class loading capability for our
recipe implementation. The facility interface consists of a set of Java classes and interfaces
exported by the facility module. A service recipe can be written by designing a Java class
that “implements” theRecipe interface, which provides a method for the synthesizer to
invoke the recipe. A recipe will use the classes and methods described earlier to construct
the abstract configuration and the objective function.

To interpret a recipe, the interpreter module dynamically loads the recipe class using
Java class loading capability and executes the recipe through the invocation method. During
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the execution, the recipe class accesses the facility module as described above. After the
execution, the facility module has both the abstract configuration and objective function.
The interpreter module then invokes a method in the facility module to start the physical
mapping phase.

As described in Chapter 3, we have designed and implemented the Network-Sensitive
Service Discovery (NSSD) infrastructure to support physical mapping. In addition, to sup-
port theLatencyM metric used in objective functions, we use the Global Network Posi-
tioning (GNP) [97] approach to provide estimates of network latencies between nodes. The
BandwidthM metric is not supported since we have not integrated a bandwidth measure-
ment infrastructure.

To solve the optimization problem of physical mapping, we have implemented the fol-
lowing optimization algorithms in the synthesizer

• SA(R): This means simulated annealing with temperature reduction ratioR, which
affects the optimization cost and the optimality of the resulting configuration. The
optimization cost of this algorithm grows slowly with the problem size since the
number of iterations is independent of the problem size.

• Hybrid(m): The hybrid heuristic is applied to reduce the problem size by choosing
m “locally good” candidates for each semi-dependent component. The exhaustive
search algorithm is then used to solve the reduced problem. Although the complexity
of this algorithm is much lower than that of exhaustive search (e.g.,O(n3) vs. O(n5)
in the video conferencing scenario), it still grows rapidly with the problem size and
thus becomes infeasible quickly.

• HybridSA(m): This is the same as Hybrid(m) except that simulated annealing is used
instead of exhaustive search. Therefore, the cost property is similar to generic sim-
ulated annealing. Note that we increase the temperature reduction ratio withm to
achieve better optimality (at higher costs).

In addition, we have implemented the generic exhaustive search algorithm, which is expen-
sive but is able to find the actual optimal solution. We have also implemented a heuristic
algorithm for thep-median problem, which appears in the selection of ESM proxies, for
example.

4.5 Evaluation

In this section, we evaluate several aspects of the recipe-based self-configuration architec-
ture. In Section 4.5.1, we illustrate the expressiveness of our recipe representation using
several examples. In Section 4.5.2, we look at the effectiveness and development cost
of recipe-based self-configuration. In Section 4.5.3, we evaluate the effectiveness of al-
gorithms based on the hybrid heuristic. Finally, we use an example in Section 4.5.4 to
illustrate how the synthesizer collects algorithm properties offline and performs algorithm
selection accordingly.
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Figure 4.12: Service-specific knowledge for the video streaming service.

Figure 4.13: A video streaming recipe.

4.5.1 Expressiveness of recipe representation

To evaluate the expressiveness of the recipe representation, we apply the recipe representa-
tion to the other two services in Section 4.2.1 in addition to video conferencing. Figure 4.12
illustrates the service-specific knowledge for the video streaming service in Figure 4.2, and
Figure 4.13 shows a recipe based on the knowledge. Similarly, Figure 4.14 illustrates the
service-specific knowledge for the interactive search service in Figure 4.3, and the corre-
sponding recipe is shown in Figure 4.15.
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Figure 4.14: Service-specific knowledge for the interactive search service.

The video streaming recipe constructs different abstract solutions depending on whether
the user is requesting MPEG-2 or MPEG-4 video. The user is represented by the physical
componentclient extracted from the user request. The objective function in Figure 4.2
is easily constructed using the objective function API.

In the interactive search service recipe,client (the user) andstorageServers
(the storage servers) are fixed physical components extracted from the user request. For
each server, if it does not have sufficient computation resources, the recipe adds a compu-
tation proxy and its “contribution” to the global objective in Figure 4.3. In these examples,
the recipe representation allows us to express the service-specific knowledge easily and
flexibly.

Of course, different providers building the same service may design different recipes.
For example, instead of the recipe in Figure 4.13, a provider of a video streaming service
may come up with the simpler recipe in Figure 4.16 that constructs an objective function
involving only local optimization. Using this “local” recipe, the synthesizer may not pro-
duce the globally optimal configuration, but the synthesizer will spend significantly less
time in configuring the service. In this particular recipe, the objective function does not
involve the transcoder, so the synthesizer can select a random candidate. However, a recipe
may also construct objective functions for individual components so that each component
is selected using its own local objective.
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Figure 4.15: An interactive search service recipe.

AbsConf conf = new AbsConf();
AbsComp vserver = conf.addComp("MPEG2VideoServer");

if (client.getProperty("VideoIn").equals("MPEG2")) {
conf.addConn(vserver,client);

} else {
AbsComp transcoder = conf.addComp("Transcoder");
conf.addConn(vserver,transcoder);
conf.addConn(transcoder,client);

}
Term obj = new Term(new LatencyM(vserver,client));
Function objfunc = new Function(obj);

Figure 4.16: A simpler video streaming recipe.

To see the effect of the different video streaming recipes, we perform a set of sim-
ple simulations. We obtain the GNP coordinates of 869 Internet nodes from the GNP
project [97], so the latencies between the nodes are realistic. We randomly select 600
nodes to represent clients, servers, and transcoders (200 each). For each client, we find the
best pair of server and transcoder using either the “global” recipe or the “local” recipe. This
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is repeated 20 times for a total of 4000 scenarios. We compute the resource consumption
(i.e., the global objective) of the resulting configuration in each scenario and also measure
the time it takes to find the configuration. The average resource consumption is 90.79 for
global and 203.41 for local. The time measurements (total of 4000 scenarios) are 158.20
seconds for global and 2.05 seconds for local. The results clearly show the trade-off be-
tween optimality and optimization cost in the two recipe designs. Therefore, providers can
write different recipes according to their service-specific requirements.

4.5.2 Effectiveness and cost of recipe-based self-configuration

To evaluate the effectiveness of our recipe-based self-configuration architecture, we per-
form a set of experiments where we use the video conferencing service recipe described
earlier to create a self-configuring video conferencing service. Since our focus is on how
the synthesizer uses the recipe to perform global configuration, in our experiments the syn-
thesizer does not actually deploy the components. Instead, we look at the efficiency with
which the synthesizer composes the optimal configuration and the optimality of the selec-
tion of components in the composed configuration. The efficiency is measured by thecon-
figuration time per requestmetric, which is the time needed by the synthesizer to compose
the optimal configuration. We measure the optimality using therelative optimalitymetric,
which compares the optimality of the resulting configuration to the actual optimum, for
example, 1.3 means 30% worse than the actual optimum. The actual optimum is obtained
using the exhaustive search algorithm. When the problem size is large, exhaustive search
becomes infeasible, and we compute the relative optimality by comparing the result to the
best configuration in the particular experiment.

Our experiments use the video conferencing scenario in Figure 4.4, i.e., we assume each
user request represents five participants (2 NMs, 2 VICs, and 1 HH), and it requires the self-
configuring service to find a VGW, a HHP, and 3 ESMPs to optimize the shown objective.
As with the simulations described previously, we use the set of 869 nodes measured by
the GNP project so that the latencies between nodes are realistic. For each experiment, we
randomly select (from the 869 nodes)n candidates for each of VGW, HHP, and ESMP, and
we generate 20 requests (each of which consists of 5 participants). The synthesizer uses
the recipe to compose the optimal configuration for each of the requests by selecting the
best candidates of VGW, HHP, and ESMP. In our experiments,n ranges from 5 to 200.
For eachn, the above experiment is repeated 10 times, resulting in 10 different candidate
distributions and a total of 200 conferencing sessions.

For each request, the synthesizer executes the recipe in Figure 4.11 to compose the
optimal configuration. As described earlier, the synthesizer selects the best candidates
by querying the NSSD infrastructure. In our experiments, the synthesizer and the NSSD
infrastructure are both run on the same desktop machine with a Pentium III 933 MHz CPU,
512 MB of RAM, and Red Hat Linux 7.1. The synthesizer is run using J2SE 1.4.2, and it
communicates with NSSD through TCP sockets.
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Figure 4.17: Relative optimality: generic simulated annealing.

Efficiency and optimality. We now present results from the first set of experiments
where the synthesizer uses the generic simulated annealing optimization algorithm with
two different temperature reduction ratios, 0.9 and 0.995. We measure the configuration
time for each request and compute the relative optimality of the configurations produced
by the two algorithms. The results are averaged over the 200 requests of 10 different can-
didate distributions.

The average relative optimality of the two algorithms can be seen in Figure 4.17. Since
exhaustive search algorithm becomes infeasible with the largern in these experiments, we
compute the relative optimality by comparing the two algorithms with each other. We can
see that the relative optimality of SA(0.995) is always close to 1.0. This is because in
most sessions, the configuration composed by SA(0.995) is better than that composed by
SA(0.9). Therefore, in most sessions, SA(0.995) has relative optimality 1.0, and thus its
average relative optimality is close to 1.0. On the other hand, whenn is large, on average the
configuration found by SA(0.9) is about 30% worse than that found by SA(0.995), which
is expected since SA(0.9) reduces the “temperature” much more quickly and therefore is
more likely to fall into local optima.

Figure 4.18 shows the average configuration time per request for the two algorithms.
We can see that because of the properties of the simulated annealing algorithm, the confi-
guration time only increases slowly with the problem size. Even with the more expensive
SA(0.995), the configuration time is about 5 seconds per request whenn is 200. Given that
we are targeting session-oriented services with session duration on the order of minutes or
hours, this can be considered a reasonable price to pay in order to find a better configura-
tion. On the other hand, the configuration time can be reduced by a factor of roughly 3 to 10
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Figure 4.18: Configuration time per request: generic simulated annealing.

by using the SA(0.9) algorithm if the decrease of optimality as shown earlier is acceptable.

Breakdown of configuration time. To look more closely at how much time the different
self-configuration tasks consume, we categorize the configuration time into three parts:

• Objective evaluation.This is the total time that the synthesizer spends in evaluating
the value of the objective function for a particular feasible configuration.

• Service discovery.This is the total time the synthesizer spends in querying the NSSD
infrastructure to obtain the eligible candidates, including the communication over-
head.

• Synthesizer. This is the total time the synthesizer spends on everything else, for
example, executing the recipe, applying optimization algorithms, finding feasible
configurations, and so on.

Figure 4.19 shows a breakdown of the configuration time forn from 50 to 100. We can
see that service discovery takes a fixed amount of time for a particular problem size, and
the time increases with the problem size. This is because properties of the current NSSD
implementation, the underlying SLP implementation, and the Java implementation of the
SLP API cause the query/reply time to increase with the number of candidates returned.
The generic simulated annealing algorithm requires all candidates, and therefore the service
discovery time increases withn.

Excluding the service discovery time, we can see that the synthesizer spends almost
all the configuration time in the evaluation of objective values. Recall that our objective
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Figure 4.19: Breakdown of configuration time per request: generic simulated annealing.

function API can be used in a recipe to construct a simple tree-like data structure represent-
ing the objective function. Given a feasible configuration, its objective value is evaluated
by traversing this tree. Since the data structure is not efficient, and the evaluation needs
to be done for every feasible configuration considered by the optimization algorithm, the
resulting overhead is significant compared to other tasks that need to be performed by the
synthesizer. Such overhead can be greatly reduced by, for example, using a more efficient
data structure to represent the objective function, implementing the objective evaluation
mechanisms in a lower-level language, and so on.

To demonstrate this, we conducted a set of simple experiments that measure the over-
head of traversing the data structure representing the objective function in the video confer-
encing example. We extract the objective function data structure and traversal code from
the synthesizer Java implementation into a standalone program, and we compare this pro-
gram with a comparable implementation written in C++. We measure the time it takes for
either program to perform 106 traversals. Note that this measured overhead does not in-
clude the overhead of evaluating the metric terms, i.e., the latencies, which are replaced by
random numbers in the experiments. The experiments are conducted on a desktop machine
with a Pentium 4 3.0GHz CPU, 512 MB of RAM, and Fedora Core 2 Linux. The Java
program is compiled and run with J2SE 1.4.2, and the C++ program is compiled with gcc
3.3.3 without compiler optimizations. The results show that the Java version, representing
our prototype implementation, takes 61.62 seconds to perform 106 traversals, and the C++
version takes 1.09 seconds. In other words, by porting the traversal code to C++, the speed
of traversing the objective function can be increased by a factor of more than 50.
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Excluding the service discovery and objective evaluation time, we can see that the over-
head incurred by the synthesizer is insignificant. In other words, in our recipe-based self-
configuration architecture, very little overhead is incurred by the abstraction of service-
specific knowledge into recipes and the execution of recipes to compose optimal configu-
rations.

Development cost. Finally, we look at the required development cost for a service pro-
vider using the recipe-based self-configuration approach. As mentioned previously, the
development cost includes different aspects such as the expertise required in different ar-
eas, the lines of code that the provider needs to implement, and so on. Here we only look
at the more concrete metric, that is, the number of lines of code in the implementation.

We compare our recipe-based approach with the service-specific approach. Previ-
ously, we built a self-configuring video conferencing service using the service-specific
approach [122], i.e., we built a service-specific self-configuration module that integrates
the supporting infrastructures and is able to compose service configurations for video con-
ferencing sessions. This service-specific self-configuration module consists of 4141 lines
of C++ code, including the hard-wired self-configuration knowledge and the integration
of supporting infrastructures. Note that this does not include the infrastructure code such
as NSSD and SLP, the required libraries such as libxml2 [86] for XML processing, and
the actual video conferencing components such as the video conferencing gateway [67].
In contrast, using the recipe-based self-configuration architecture described here, a service
provider can build a similar self-configuring service by designing the recipe in Figure 4.11.
Including the necessary extra lines (e.g., “import”), the actual recipe consists of 80 lines of
Java code.

Of course, our recipe representation cannot possibly cover all conceivable service-
specific tasks that a provider may want the self-configuring service to do. For example,
if a provider has a special algorithm that is only applicable for the particular physical map-
ping problem in its service, our recipe-based approach will not be able to take advantage
of the algorithm since the recipe representation does not allow the specification of an algo-
rithm. However, our assumption is that most service providers do not have expertise in the
area of optimization, and the built-in algorithms should provide reasonable performance
for most providers. Moreover, if the provider does have a specialized algorithm, it may
be implemented as a plugin to the synthesizer to extend the capability of the synthesizer.
The same principle extends beyond the algorithm example, i.e., our aim is to capture the
aspects of service-specific knowledge that are important for most service providers, and
if a provider has additional expertise, our framework may be used as a basis for further
customization.

The comparison above between recipe-based and service-specific approaches demon-
strates that our recipe-based self-configuration architecture enables the use of providers’
service-specific knowledge in self-configuration with dramatically lower development cost
than what is required in the service-specific approach.

On the other hand, when compared with the generic approach, by paying a slightly
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higher development cost (e.g., 80 lines vs. 0), a service provider can customize the self-
configuration process using a broad range of service-specific knowledge. As mentioned
earlier, since the generic type-based approach cannot take advantage of the service-specific
knowledge, its effectiveness is limited in two aspects: (1) it is inefficient due to the large
search space for feasible abstract configurations, and (2) the resulting configuration is sub-
optimal because of generic component selection criteria. Below we briefly discuss these
two issues.

In our approach, the abstract configuration for a request is constructed by executing the
recipe. Therefore, it is very efficient since a “search” is not necessary. In contrast, in the
generic type-based approach, the generic self-configuration must look for combinations of
of components that can satisfy the user-requested type. For example, let us first consider
the simple path model, i.e., all components in a configuration form a path from a sender to
a receiver. Suppose that there arek hops on the path excluding the sender and the receiver.
At each hop, there aren standardized input types andn output types, and there aren2

standardized component types, i.e., one component type for each input/output combination.
Suppose that onlyr of then input types andr of then output types at each hop are relevant
to the target service, e.g., video streaming. Therefore, at the first hop from the receiver,
the generic approach needs to look at then2 component types to find ther candidates that
output the receiver’s input type. At the second hop, it needs to look atn2 components to
find r matching components for each of ther components at the first hop, and so on. As
a result, the number of feasible abstract configurations isO(rk), and the complexity of the
search at each hop isO(rn2).

Of course, the assumptions in the above simple calculations may not be realistic, and
optimizations such as caching may be applied to make the search more efficient such that
its performance is acceptable for small scale problems. However, if we go beyond the sim-
ple path model and consider configurations involving multi-point communication, then the
complexity can go up significantly. For example, suppose that we want to find a configu-
ration for multi-point communication amongn users. We can use an ESM-like service to
support alln users. We can also use ESM forn−1 users and connect the remaining 1 user
using unicast, and so on. This results inn types of configuration even before considering
input/output types. Also, if we use ESM proxies for multicast, the generic module needs to
try different number of ESM proxies in the configuration. Since it has no service-specific
knowledge, it may consider a wide range of numbers, say 1 ton, to be feasible. This
adds yet another level of complexity to the search and results in a large number of feasible
abstract configurations.

Furthermore, to select a feasible abstract configuration, the generic module can only use
some generic criteria, e.g., minimizing the number of components. However, this may re-
sult in sub-optimal or even unreasonable configurations. In the above ESM example, if the
generic module tries to minimize the number of components, it will select a configuration
with a single ESM proxy to supportn users, which defeats the purpose of multicast. Finally,
similar to the selection of a feasible abstract configuration, the generic module can also only
use some generic criteria to select the physical candidates for components in the abstract
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configuration. Again, this may results in sub-optimal configurations. In other words, even
if the complexity of the search for feasible abstract configurations can be reduced to an ac-
ceptable level, the physical configuration selected using generic optimization criteria may
be unacceptable. For example, if the generic module selects the lowest-cost candidates to
minimize the cost of the video conferencing configuration, the selected video conferencing
gateway and handheld proxy may be far away from the NetMeeting users and the handheld
users, respectively (in terms of latency), resulting in poor performance. Therefore, based
on the above factors, we argue that by using the abstracted service-specific knowledge, our
approach can achieve much higher effectiveness for many services than what the generic
approach can.

4.5.3 Effectiveness of hybrid heuristic

In Chapter 3, we presented simulation results that demonstrate that algorithms based on
the hybrid heuristic can find solutions that are much better in terms of global optimality
than those found by simply combining locally optimal solutions. In this section, we eval-
uate the effectiveness of the hybrid heuristic in the context of the operation of the whole
recipe-based self-configuration architecture by comparing the efficiency and optimality of
the Hybrid and HybridSA algorithms with those of the generic exhaustive search and SA
algorithms.

First, we perform experiments with small-scale problems, i.e., withn from 5 to 15.
Since exhaustive search is feasible in this range, we compute the relative optimality of
different algorithms by comparing the results with the actual optima obtained from the
exhaustive search algorithm. Figure 4.20 shows the relative optimality of four algorithms.
Exhaustive search always finds the actual optima and has relative optimality 1.0. The two
algorithms based on the hybrid heuristic both outperform the generic simulated annealing
algorithm, and their relative optimality also deteriorates slower than simulated annealing.
As expected, hybrid(4) performs better than HSA(4), since hybrid uses exhaustive search
in the reduced search space while HSA uses simulated annealing.

The average configuration time per request of the different algorithms is shown in Fig-
ure 4.21 (note the log scale on the Y-axis). Not surprisingly, the configuration time of the
exhaustive search and hybrid(4) algorithms grows very rapidly with the problem size, since
the sizes of their search spaces areO(n5) andO(n3), respectively. In fact, the results for
the two algorithms match almost exactly with curves (not shown) forn5 andn3, respec-
tively. On the other hand, the configuration time of the simulated annealing and HSA(4)
algorithms grows very slowly (not evident in this graph) with the problem size. HSA(4) has
a lower configuration time since it only performs simulated annealing on a reduced search
space. From these results, we can see that the HSA algorithm provides relatively good
optimality with very low cost, and the hybrid algorithm provides very good optimality with
relatively low cost.

To look at the effectiveness of the hybrid heuristic for larger-scale problems, we com-
pare the SA(0.995) and HSA(4) algorithms withn from 5 to 200. The relative optimality is
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Figure 4.20: Relative optimality: comparison for small-scale problems.

Figure 4.21: Configuration time per request: comparison for small-scale problems.

computed by comparing the two algorithms with each other. The optimality result and the
configuration time per session are shown in Figures 4.22 and 4.23, respectively. The results
basically follow the trend seen in the above results for small-scale problems. The HSA(4)
algorithm performs better than SA(0.995) in terms of both the optimality and the configu-
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Figure 4.22: Relative optimality: comparison for larger-scale problems.

Figure 4.23: Configuration time per request: comparison for larger-scale problems.

ration time. This is because HSA uses the hybrid heuristic and focuses on a reduced search
space that is more likely to contain the actual optimum than other parts of the search space.
We also see that relative optimality curves of both algorithms become flat when the scale is
large, which suggests that although the optimality of SA deteriorates faster at smalln, both
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Figure 4.24: Breakdown of configuration time per request: comparison for larger-scale
problems.

algorithms deteriorate at roughly the same rate after the problem size becomes sufficiently
large.

Finally, we again break down the configuration into three parts and show the results
in Figure 4.24. Similar to the breakdown results earlier, we see that the most significant
overhead lies in the evaluation of the objective function. The overhead caused by recipe
interpretation and other tasks of the synthesizer (excluding service discovery) is negligible
in comparison. We also see that at the same problem size, HSA(4) has a shorter service
discovery time than SA(0.995). This is because, as discussed earlier, the service discovery
time is proportional to the number of candidates returned, and HSA(4) requests for fewer
candidates than SA does. For example, whenn is 200, SA(0.995) performs 5 service dis-
covery operations, each of which returns 200 candidates. In contrast, HSA(4) performs 2
service discovery operations that return 4 candidates each and 3 service discovery opera-
tions that return 200 candidates each.

4.5.4 Algorithm selection using offline data

Finally, in this section we illustrate how the synthesizer can obtain the cost and optimality
data offline and use the data for algorithm selection. As discussed earlier, the cost and
optimality properties of the synthesizer’s built-in algorithms can be measured offline using
simulated requests. We perform a set of experiments to collect such data for the various
algorithms we implemented in the synthesizer. The experiment setup is the same as that
in the experiments discussed above. Again, because it becomes infeasible to use the more
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Figure 4.25: Optimality of resulting configurations: small-scale problems.

Figure 4.26: Optimization cost: small-scale problems.

expensive algorithms for larger scale problems, the results are presented in two parts.
For n between 5 and 15, Figures 4.25 and 4.26 show the optimality and cost of the

different built-in algorithms, respectively. Figures 4.27 and 4.28 show the results forn
between 25 and 200. The trends in these results match those we have seen in the previous
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Figure 4.27: Optimality of resulting configurations: larger-scale problems.

Figure 4.28: Optimization cost: larger-scale problems.

experiments.
The cost and optimality data in these graphs can be used by the synthesizer to perform

algorithm selection for the video conferencing service. In other words, similar to our ex-
periments, the synthesizer can use simulated requests to measure the cost and optimality
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properties of the built-in algorithms. Such data can be summarized into a lookup table that
serves the purpose of the functionsP() andC() as described earlier. Now we use an exam-
ple to illustrate how the synthesizer performs algorithm selection according to the process
discussed in Section 4.3.2.

Suppose the provider’s cost constraint is 1 seconds per session, and the optimality con-
straint is 1.15. The synthesizer obtains the functionsP() andC() from the results in the
graphs above. Suppose now the synthesizer needs to select an optimization algorithm to
solve the physical mapping problem for a particular request. The synthesizer performs
algorithm selection as follows.

• Determining eligible algorithms: The synthesizer analyzes the objective function
constructed by the video conferencing recipe and discovers that there are two semi-
dependent components. Therefore, the hybrid and HSA algorithms are eligible. In
addition, the generic exhaustive search and simulated annealing algorithms can also
be used.

• Determining problem size: The synthesizer queries the service discovery infras-
tructure and discovers that there are 15 candidates for each of the components in the
abstract configuration.

• Applying cost constraint: Since the provider’s cost constraint is 1 seconds per ses-
sion, the synthesizer uses the functionC() (see Figure 4.26) and discovers that when
n is 15, only 4 algorithms can satisfy the cost constraint: SA(0.9), SA(0.95), HSA(1),
and HSA(2).

• Applying optimality constraint : Given the optimality constraint of 1.15, the syn-
thesizer uses the functionP() (see Figure 4.25) and discovers that among the 4 algo-
rithms above, only HSA(2) can satisfy the optimality constraint whenn is 15.

• Selecting an algorithm: Since there is only one algorithm that satisfies both con-
straints, the synthesizer will use the HSA(2) algorithm to solve the physical mapping
problem for the particular request.

To summarize, by providing an interface for providers to specify their desired cost/opti-
mality trade-off, our approach allows providers to customize algorithm selection without
knowing the details of the algorithms.

4.6 Related work

Recently, self-configuration is identified as one of the fundamental features of “autonomic
computing systems” [82, 50]. Many previous studies have proposed different forms of self-
configuring services. For example, the Xena service broker [15] in the Darwin project [14]
allows a network application to submit an input graph. Such a graph is roughly equivalent
to the abstract configuration composed by our synthesizer. Xena then selects the necessary
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components in the graph for the application using some generic optimization criteria. In the
Globus resource management architecture [26, 42], an application can specify its resource
requirements using the Resource Specification Language (RSL). Application-specific bro-
kers can translate the high-level abstract requirements into concrete resource specifications,
for example, 10 nodes with 1GB memory. Such specifications are further “specialized” un-
til the locations of the resources are completely specified, for example, 10 nodes at site
A. The QoS resource manager [44] at each site then handles the resource reservation and
run-time management issues. The ClassAd language in the Matchmaking framework [112]
allows a user to specify the requirements of a computation tasks, and the framework pro-
vides mechanisms for mapping such requirements with the appropriate resources, which
are also described using the ClassAd language. The language is extended by Liu et al. [87]
and Raman et al. [113] to support mapping a single task to multiple different resources and
to support resource co-allocation, respectively. In contrast to our work, these approaches
focus on the task of physical mapping and does not emphasize the use of the service-specific
knowledge.

Other previous efforts build self-configuring services using type-based service compo-
sition, i.e., components have well-defined input/output (requires/provides) interfaces such
that a generic self-configuration module can automatically find a configuration that can sat-
isfy a particular user request. For example, the Ninja architecture [57] provides a cluster
computing environment and uses type-based service composition [90] to construct a “ser-
vice path” that satisfies a particular user request, i.e., it is able to find a series of components
that can convert the output type of a server to match the input type of the user. Iceberg [129]
uses the Ninja platform to construct a framework for sophisticated communication services.
The Panda project [115] also uses the service path model to find a series of “adaptors” that
can remedy a particular set of network problems that occur between a sender and a re-
ceiver. Similar to the path model, the service morphing approach [107] supports dynamic
configuration and adaptation for data streaming services. The information channel between
two entities can be configured and adapted by dynamically generating and deploying code
modules that process and transform the data to cope with variations in resource availability.
The CANS infrastructure [48] supports dynamic composition and adaptation by customiz-
ing the data path between users and services using a series of drivers that transform the data
stream. The Partitionable Services Framework [75] builds on CANS and supports a more
flexible and general composition model. These approaches provide a generic framework
that can be shared by different services and thus reduce the development cost. However,
their effectiveness are limited by the fact that they cannot take advantage of the providers’
service-specific knowledge for self-configuration.

The SWORD toolkit [109] allows service providers to quickly create composite Web
services. A rule-based plan generator is used to find a feasible “plan” using type-based
composition. The plan consists of the components necessary to satisfy the provider’s
needs. However, the toolkit does not handle the deployment of the components, and the
provider will deploy the components according to the generated plan. In the Rainbow
framework [19], a software system is modeled using Acme [53], an architecture descrip-
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tion language. This allows the specification of the structure, properties, constraints, types,
and styles of the system. Using such a formal description, Rainbow monitors the abstract
model and modifies it to adapt to run-time environment changes. A compositional approach
is proposed in [121] for constructing connectors between software components, i.e., a se-
ries of transformations are applied in order to connect incompatible components together.
The approaches described above focus on higher-level abstract structures of the service
configuration and do not address the physical mapping problem.

Rascal [49] is a resource manager for multi-agent systems in “smart spaces” where
it dynamically allocates “resources” such as TV set, projector display, and other devices
among different applications using utility functions. The task-driven computing approach
allows a user to specify the desired task and maps the task to the appropriate software
modules [130]. The Prism task manager [120, 108] in the Aura project [54] extends task-
driven computing and supports task migration, run-time adaptation, and context awareness.
These approaches focus on software module selection within a small locale and parameter-
level configuration/adaptation instead of component selection in the wide-area network, and
they emphasize user-specific concerns such as distraction and intention instead of network
performance.

As discussed previously, specialized frameworks have been proposed to provide self-
configuration capabilities to specific types of services. For example, the Da CaPo++ archi-
tecture [123] uses a set of protocol modules to generate a customized communication proto-
col that meets the requirements of a particular communication session. Tina [35] is an archi-
tecture for composing telecommunication services using components with CORBA [101]
IDL interfaces. Another CORBA-based architecture, xbind [84], uses low-level compo-
nents such as kernel services and peripherals to compose services. CitiTime [6] is an
architecture that dynamically creates communication sessions by downloading and acti-
vating an appropriate service module according to the requirements of the caller and the
callee. Gbaguidi et al. [55] propose a Java-based architecture that allows the creation of
hybrid telecommunication services using a set of JavaBeans components. Other examples
include using shortest path algorithms to select components of a given service path in peer-
to-peer Grids [60], selecting components and resources given a set of multi-fidelity applica-
tions [108], and selecting resources for path-based resource-intensive applications [88]. As
discussed earlier, although using such service-specific approaches can achieve highly effec-
tive self-configuration for the target service through the use of providers’ service-specific
knowledge, it requires high development cost since each provider needs to implement a
complete self-configuration solution.

Finally, as mentioned earlier, researchers have proposed many optimization algorithms
for solving many different forms of component/resource selection/mapping problems. For
example, a dynamic algorithm for mapping components along a path [48], a shortest-path
algorithm for selecting intermediate processing sites [21], a shortest-path algorithm for
constructing a service path [60], and heuristic algorithms for the resource mapping and co-
allocation problems [87, 113]. Each of these studies addresses a subset or a particular form
of the mapping problems. In contrast, since in our approach a provider can specify a general
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objective functions as the optimization criteria for the mapping problem, the synthesizer
must be able to solve a broader range of mapping problems. Therefore, we focus on how
the synthesizer can take a provider’s service-specific trade-off between optimization cost
and optimality into consideration in order to select the most suitable algorithm for each
particular mapping problem.

4.7 Chapter summary

In this chapter, we described the design and implementation of the synthesizer, the core el-
ement in our recipe-based self-configuration architecture. We defined the recipe represen-
tation as a set of APIs that can be used by a service provider to write its service recipe. The
recipe APIs allows a provider to express the service-specific knowledge for both abstract
mapping, i.e., finding the necessary component types, and physical mapping, i.e., finding
the actual components in the network. The synthesizer performs abstract mapping for a
request by executing the recipe, and physical mapping is based on the objective function
constructed during the recipe execution. We discussed how the complexity of the physi-
cal mapping problem depends on the objective function and what optimization algorithms
can be used to solve different problems. We then described a process that the synthesizer
can use to automatically select the best optimization algorithm for a particular physical
mapping problem according to the cost and optimality trade-off specified by the service
provider.

In our evaluation, we first illustrate the expressiveness of our recipe representation by
designing service recipes for three different services. We also use two different recipe de-
signs for the same service to show how providers can write different recipes according to
their own goals. We then evaluate the effectiveness of the recipe-based self-configuration
approach using the video conferencing service scenario. The results show that, using
generic simulated annealing algorithms, the synthesizer can use the service-specific knowl-
edge in a recipe to efficiently find suitable service configurations. Moreover, most of the
overhead is spent in our unoptimized objective evaluation mechanisms. The overhead
caused by the abstraction of service-specific knowledge is almost negligible. We also com-
pared the development cost of our recipe-based approach with that of the service-specific
approach and found that our approach requires dramatically lower implementation efforts
yet still allows the use of providers’ service-specific knowledge. We then evaluated the
effectiveness of our hybrid heuristic and showed that the hybrid heuristic combined with
simulated annealing is more effective than generic simulated annealing both in terms of
optimality and cost. Finally, we used the video conferencing service scenario to illustrate
how the synthesizer can use cost and optimality data collected offline to select the best
optimization algorithm according to the provider’s cost and optimality constraints.



Chapter 5

Run-time Adaptation

As discussed in Chapter 2, self-configuration is necessary at both invocation time and run
time. So far, we have described the recipe-based self-configuration architecture that per-
forms global configuration at invocation time. A service provider can specify the service-
specific global configuration knowledge in a recipe, which is then used at invocation time
by the synthesizer to compose the optimal global configuration for each user request. In
this chapter, we focus on the run-time adaptation aspect of self-configuration.

One näıve approach to add such run-time adaptation to our recipe-based self-configura-
tion architecture is to have the synthesizer periodically re-perform global configuration in
order to maintain the optimality of the service configuration at run time. However, this is
not a desirable approach since (1) global configuration is expensive in terms of computa-
tion resource requirements and thus cannot be performed frequently, (2) as a result, such an
approach is not “agile” [100], i.e., it cannot react to frequent changes in user requirements
and environment characteristics in a timely fashion, and (3) switching to a completely new
global configuration at run time may cause disruption/interruption to the user session, po-
tentially resulting in poor service quality. Therefore, we focus on local adaptations that
make incremental changes to the configuration at run time.

Like the global configuration knowledge, the knowledge of how to perform adapta-
tions is also highly service-specific. We have identified three aspects of service-specific
adaptation knowledge:adaptation strategies, customization, andcoordination. Previously,
research efforts in adaptation focus on supporting different forms of adaptation strategies
that specify when and how to perform adaptations, for example, using a utility function
to guide the adaptation of system parameters [128], using explicit “event→action(s)”-style
strategies [19], and so on. However, customization and coordination have been largely
ignored.

Customization refers to the fact that there may be multiple strategies for a particu-
lar adaptation, and the best strategy may depend on the actual system configuration and
environment. For example, for a self-configuring video conferencing service, some user
sessions may use IP multicast configurations while others have to use end system multi-
cast. Therefore, the adaptation strategies need to be customized according to which type of
configuration is used since the two types of configuration have very different requirements.

105
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Figure 5.1: Two service configurations for a conferencing session: IPM and ESM.

On the other hand, coordination of adaptation strategies is important because, for example,
two strategies may attempt to make conflicting changes to the current configuration, or the
provider may accidentally design two strategies that “work at cross purpose”. Therefore,
coordination mechanisms are needed to detect and resolve such problem cases.

In this chapter, we describe how we extend our recipe-based self-configuration archi-
tecture to support run-time local adaptations. Section 5.1 identifies the three aspects of
service-specific adaptation knowledge, and Sections 5.3, 5.4, and 5.5 describe how they are
supported. The recipe APIs are extended so that a service provider can specify these three
aspects of adaptation knowledge in a recipe. At invocation time, the synthesizer customizes
the adaptation strategies according to the customization knowledge. At run time, the syn-
thesizer invokes the adaptation strategies when appropriate. The results of different strate-
gies are coordinated by theadaptation coordinatorusing the coordination knowledge in the
recipe. We describe our prototype implementation in Section 5.6. In Section 5.7, we per-
form simulations using a massively multiplayer online gaming service scenario to illustrate
the flexibility of the customization mechanisms and to demonstrate that our recipe-based
approach allows service providers to easily design their service-specific coordination poli-
cies, and the coordination mechanisms work as expected and do not introduce significant
overhead.

5.1 Problem statement

Let us first revisit the video conferencing scenario from Chapter 2 to illustrate the three
aspects of a provider’s service-specific adaptation knowledge. In Figure 4.4, five users
want to hold a video conference. Two are using MBone conferencing applications vic/SDR
(VIC), two use NetMeeting (NM), and one uses a receive-only handheld device (HH). The
self-configuring video conferencing service can compose distributed gateway and proxies
together to support such a conferencing session. As shown in Figure 5.1, there are two
possible configurations for this conferencing session: (1) if IP multicast (IPM) is supported
by the components and the underlying networks, then it will be used for communication
among the VIC users, the video conferencing gateway (VGW), and the handheld proxy
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Figure 5.2: A massively multiplayer online gaming service.

(HHP); (2) otherwise, End System Multicast (ESM) [23] will be used, i.e., three ESM
proxies are needed in this scenario.

At run time, the service needs to adapt to changes in user requirements or environ-
ment, e.g., the VGW becomes overloaded. The service provider needs to design adaptation
strategies to handle such changes. Furthermore, the strategies may need to be customized
according to the actual configuration. For example, to handle “VGW overload”, the provi-
der may have different strategies S1 and S2 for the IPM and ESM configurations.

• S1: (VGW overloaded)→ (degrade VGW output video quality)

• S2: (VGW overloaded)→ (replace VGW with a high-capacity VGW)

If the current configuration uses IPM, strategy S1 is used to maintain the low cost of the
configuration. On the other hand, S2 is used for ESM configurations since the users are
already paying a higher cost.

The various strategies also need to be coordinated. Suppose the provider designs the
following strategy.

• S3: (VGW congestion)→ (replace VGW with a high-bandwidth VGW)

Note that if S2 and S3 are invoked at the same time, they may want to replace the current
VGW with different candidates. Therefore, only one of them should be allowed to execute
its actions.

As another example, consider the self-configuring online gaming service for massively
multiplayer online games, shown in Figure 5.2. The service uses a set of distributed game
servers to maintain a partitioned virtual game world (each server maintains a partition). At
run time, the service needs to dynamically adapt to the current load. Suppose the provider
designs the following adaptation strategies.
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• S4: (serversoverloaded, i.e., load> Ts) → (adds a new servers′; migrate half of the
players ons to s′)

• S5: (sands′ under-utilized, i.e., load< Tm)→ (migrate the players ons′ to s; remove
s′)

• S6: (new user joins in the partition ofs) → (connect tos)

Note thatTs andTm are the “split” and “merge” thresholds, respectively. In addition, the
provider may want to customize S4 and S5 according to the number of servers in the current
configuration because, for example, (1) although adding more servers reduce the load, it
increases the inter-server communication overhead, and (2) the provider has contracted a
primary server pool for normal use and an emergency pool, which is more expensive, for
extraordinary load. Therefore, when the number of servers in the current configuration is
low (e.g., less than 80% of the primary pool), the provider may setTs/Tm to 0.7/0.3; when
the number is high,Ts/Tm may be set to 0.9/0.4. Finally, the strategies also need to be
coordinated. For example, when a new user joins in A’s partition (i.e., S6 is invoked), if
servers is being split (S4), then the join should be blocked until S4 finishes so that the user
can be connected to the correct server.

The above examples illustrate the three aspects of service-specific adaptation knowl-
edge: adaptation strategies, customization rules, and coordination policies. The goal of this
chapter is to extend our recipe representation so that providers can specify such knowledge
in a recipe and to extend the synthesizer architecture to provide support for the adaptation
operations. As mentioned earlier, we focus on supportinglocal adaptation, i.e., support for
adaptation strategies that only involve local actions and the customization and coordination
of such strategies. Specifically, we define the scope of local adaptation as follows.

• Single component: A local adaptation strategy adapts the configuration by executing
actions that only change a single component. Such actions include, for example,
changing the run-time parameters of a component and adding/removing/replacing a
component. For example, the strategy S1 above changes a parameter of the VGW
component, and S4 adds a new game server to the configuration.

• No effect on adaptation strategies: The actions of a local adaptation strategy does
not affect the applicability of existing strategies and does not require new strategies
to be added. For instance, in the gaming service example above, S4 can be defined to
cover all components of the game server type, instead of a particular game server. As
a result, a new server added by S4 does not require a new strategy (i.e., another copy
of S4) to be added. However, if S4 adds a new component type, e.g., text-to-voice
translator, that requires an adaptation strategy not present in the current configuration,
then S4 would need to add a new strategy. Therefore, such an adaptation action is
outside the scope of local adaptation.

• No indirect effect: The execution of a local adaptation strategy only has localized
effects on the target component, i.e., we do not consider the propagation of effects
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Figure 5.3: Extended synthesizer architecture for run-time local adaptation support.

in the global configuration. The main reason for this limitation is to reduce the com-
plexity of the coordination problem. For instance, in the video conferencing example
above, suppose two adaptation strategies are invoked at the same time. One wants to
replace an ESMP that no longer has sufficient bandwidth to the current VGW, and the
other wants to replace the current VGW because it is overloaded. If we only consider
direct effects of adaptation strategies, both actions can be executed without conflict.
However, if we consider indirect effects, replacing the ESMP may be unnecessary
since the ESMP may have sufficient bandwidth to the new VGW.

Next, we present the extended synthesizer architecture that supports run-time local
adaptation.

5.2 Architecture overview

Figure 5.3 shows the extended synthesizer architecture that supports run-time local adap-
tation. To build a self-configuring service, a service provider creates aservice recipethat
contains the service-specific knowledge. More specifically, a recipe consists of aglobal
configuration strategyand a set oflocal adaptation strategies.

Thecustomizationandcoordinationknowledge for adaptation is part of the global con-
figuration strategy. At invocation time, the synthesizer executes the global configuration
strategy to compose a service configuration. Based on the resulting configuration, the syn-
thesizer uses the customization knowledge to customize the local adaptation strategies, e.g.,
it is possible that only a subset of the adaptation strategies in the recipe is applicable for
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the current configuration. Finally, according to the coordination knowledge, the synthe-
sizer generates a set ofcoordination policiesthat can be used to detect and resolve conflicts
among the customized adaptation strategies. The coordination policies are given to the
adaptation coordinator(AC).

At run time, the synthesizer monitors the service configuration and invokes the adap-
tation strategies when appropriate. When an adaptation strategy is executed, it generates
a proposalthat is sent to the AC. The proposal specifies how the strategy wants to change
the current configuration. If a proposal does not conflict with other proposals, the AC in-
forms the synthesizer to change the configuration accordingly. Otherwise, the AC rejects
the proposal, and the proposed changes are not performed.

In addition to the local adaptations, the synthesizer can also periodically re-executes
the global configuration strategy if a more global form of adaptation is desired or required.
Because of changes in the environment and user requirements, such a re-configuration may
result in a different configuration, differently customized adaptation strategies (or a differ-
ent set of strategies), and/or a different set of coordination policies.

Next, we describe how the three aspects of service-specific adaptation knowledge are
expressed in recipes and how the adaptations are performed accordingly.

5.3 Adaptation strategies

Previous studies have proposed many different approaches for applying adaptation strate-
gies to a system. Most of these approaches are based on “internalized” adaptation strate-
gies, i.e., the adaptation logic and mechanisms are hard-wired into the system itself. Since
the developer of the system needs to implement a complete solution for run-time adapta-
tion, this internalized approach is equivalent to the service-specific approach for building
self-configuring services discussed in previous chapters where a service provider needs to
implement a complete self-configuration solution. As we have argued earlier, although such
an approach will allow the service provider to have complete control over how adaptations
should be performed, it will require high development cost.

The “externalized” approach adopted by some previous studies such as [52, 128] ad-
dresses this problem by separating the adaptation strategies and mechanisms from the ac-
tual system. This enables the development of a general adaptation framework that can be
shared/reused by different systems, and run-time adaptation capabilities can be added to a
system by designing externalized strategies without modifying the system components. As
a result, the required development cost for supporting run-time adaptation is much lower
than what is required in the internalized approach.

We can see that this externalized approach is equivalent to our recipe-based self-con-
figuration approach where the provider’s service-specific knowledge is externalized into
a recipe. Since we have already adopted such an externalized approach for global con-
figuration in our recipe-based self-configuration architecture, it is natural to extend our
architecture to support externalized adaptation strategies for run-time adaptation.

A design decision that we need to make in order to support externalized adaptation
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strategies is how to specify such strategies. As categorized in [128], an adaptation strategy
can be specified as a high-level “utility” function or an explicit “event-action” rule. The
event-action approach lets a service provider specify a rule that dictates what adaptation
“actions” should be taken when a particular “event” occurs. For example, when the event
“component X becomes overloaded” occurs, the appropriate action may be to “replace X
with a higher capacity one”. This approach is used in previous studies where the target
system involves different, heterogeneous components, for example, [52, 37].

On the other hand, the utility approach allows a service provider to specify a utility
function that indicates what configurations are more desirable. At run time, the adapta-
tion mechanisms will automatically modify the service configuration as necessary towards
higher utility. This approach is used in many previous studies that use dynamic resource
allocation as the primary means for run-time adaptation, for example, [85, 108, 128]. In
this context, the utility approach is feasible since the service configuration is represented
by a set of resource parameters and can be directly mapped to a utility value. Adaptation is
then performed by selecting the set of parameters that maximizes the utility. However, our
definition of adaptation is broader and includes component-level adaptations such as re-
placing existing components in the configuration and adding/removing components. Even
if it is possible to map every possible configuration to a simple utility value (e.g., using a
0-1 variable to represent whether each component is used in the configuration), the search
space for the resulting optimization problem (which may be a nonlinear 0-1 programming
problem [8]) is likely too large for the utility approach to be feasible. Therefore, based
on the above factors, we adopt the externalized, event-action approach for strategy spec-
ification. Next, we introduce the format of adaptation strategies and how we extend our
architecture to support such strategies.

5.3.1 Strategy format

Our support for adaptation strategies is built on the externalized approach presented in
Rainbow [52]. (We will discuss the differences between Rainbow and our work in the
related work section.) An adaptation strategy consists of the following three parts.

• Constraint: An adaptation strategy is invoked when its constraint is “violated”. A
constraint is specified as a condition on certain properties of the service configura-
tion, e.g., “load(X) < C” whereX is a server in the configuration, andC is a thresh-
old on server load. The properties can be performance metrics, such as bandwidth
and latency, or component properties. At run time, the synthesizer will monitor the
constraints associated with the adaptation strategies and invoke a strategy when its
condition becomes false.

An entity referred to in a constraint can be either a particular component (asX above)
or a type of component. For example, ifX in the above constraint refers to the
type “MPEG2Server”, then the constraint is violated when any component of type
MPEG2Server becomes overloaded. Furthermore, when a constraint is violated, the
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“violator” is passed on to the corresponding adaptation strategy (similar to Rain-
bow [52]) such that the strategy can operate on the appropriate component.

• Problem determination: A constraint violation may be caused by multiple differ-
ent triggering problems. When a strategy is invoked, it may need to, for example,
query more specific properties of the configuration in order to to determine the actual
cause of the constraint violation. For example, in the video conferencing example, a
strategy triggered by “low HH video quality” needs to determine whether the actual
problem is HHP failure, low quality codec used by the HHP, or congestion at the
HHP.

• Tactic: A tactic consists of a set ofactionsand addresses a particular triggering prob-
lem. Actions range from changing a run-time parameter of a particular component
to changing the service configuration by inserting/removing components. In the ex-
ample above, “HHP failure” can be addressed by a tactic that replaces the failed
HHP with a new one, “low quality codec” can be addressed by “increasing the codec
quality”, and so on.

To summarize, the synthesizer monitors the constraints of the adaptation strategies and
invokes a strategy in the event of constraint violation. The strategy then determines the
triggering problem and executes the appropriate tactic to perform adaptation.

5.3.2 Strategy specification

The recipe APIs described in Chapter 4 can be used to specify how to construct an abstract
configuration (e.g., types of components) and an objective function for mapping the ab-
stract configuration to a physical configuration. To allow providers to specify adaptation
strategies in recipes using the above format, we extend the recipe APIs as follows.

• Constraint: The previous objective function API allows a provider to specify a func-
tion of properties of the configuration, for example, a function of different perfor-
mance metrics. To specify a constraint, we need to add relation operators (e.g.,
“==”, “ >=”, etc.) and boolean operators (e.g., “and”) to the objective function
API.

• Problem determination: Since a recipe is written in a general purpose programming
language, for example, Java in our prototype implementation, a service provider
should have sufficient flexibility in implementing the problem determination logic.
In addition, we assume that problem determination can be done by querying more
specific properties of the configuration. Such querying operations are supported by
the original recipe APIs.

• Tactic: A tactic specifies a set ofactionsthat change the current configuration. We as-
sume adaptations are performed within a “local” scope relative to the “global configu-
ration” operation performed by the synthesizer. Therefore, the API needs to support
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local actions such as replacing a current component with a new physical candidate or
changing a parameter of a current component.

Similar to how physical mapping is done for the global configuration operation as
described in Chapter 4, when a tactic specifies an action that requires a new physical
component, it is not necessary to specify the exact physical node. Instead, an objec-
tive function can be specified as the criteria for component selection. This objective
function can be specified using the original objective function API.

• Strategy: Finally, since adaptation strategies are tied to the current configuration, they
need to be “instantiated” at the global configuration time. In our approach, global
configuration is performed by the synthesizer using the global configuration strategy.
Therefore, in the global configuration strategy, the provider needs to instantiate the
appropriate local adaptation strategies. Specifically, for each local adaptation strat-
egy, the global configuration strategy needs to construct the corresponding constraint,
instantiate the local adaptation strategy, and associate the constraint with the strategy.

Figure 5.4 summarizes the major extensions to the original recipe APIs.

5.3.3 Example

Now we use the video conferencing service as an example to illustrate how a provider’s
local adaptation strategies can be specified in the recipe using the extended APIs. Suppose
the provider implements the following tactics (for simplicity, the actual code is not shown).

• tacticNewNM : This tactic connects a new NM user to the VGW.

• tacticNewVIC : Connect a new VIC user to the closest ESMP.

• tacticNewHH : Connect a new HH user to the HHP.

• tacticVGWFail : Replace a failed VGW with a high-capacity one.

• tacticVGWOverload : Replace an overloaded VGW with a high-capacity one.

• tacticVGWCongest : Replace a congested VGW with a high-bandwidth one.

• tacticVGWLowQual : Increase the VGW’s codec quality

• tacticESMPFail : Replace a failed ESMP with a high-bandwidth one.

• tacticESMPCongest : Replace a congested ESMP with a high-bandwidth one.

The provider also implements the following strategies that use the tactics above.

• stratNewUser : This strategy is triggered when a new user wants to join the ses-
sion. It determines the problem to address and invokes the appropriate tactic as fol-
lows.
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Data structure
RelationOp Represent relation operators such as “==”, “ >=”, etc.
BooleanOp Represent boolean operators such as “AND”, “OR”, etc.
Condition Represent a combination of “Term RelationOp Term ”.
Constraint Represent a combination of “Condition BooleanOp

Condition ”.
Tactic Represent the base class for a tactic; providers implement tactics by

creating specializations.
Strategy Represent the base class for a strategy; providers implement strategies

by creating specializations.

Function
replaceComponent(c) Represent an adaptation action that replaces an ex-

isting componentc in the current configuration.
changeParameter(pn,pv) Represent an adaptation action that changes the

value of the parameterpn of a component topv .
connect(c1,c2) Represent an adaptation action that connects com-

ponentsc1 andc2 .
setTacticObjective(obj) Set the component selection objective for a tac-

tic to obj , which will be used for, e.g., the
replaceComponent actions.

addStrategy(S,C) Add the adaptation strategyS for run-time adap-
tation and associate it with constraintC.

Figure 5.4: Extensions to the recipe APIs for local adaptation strategies.

– If the new user is NM→ invoketacticNewNM

– If the new user is VIC→ invoketacticNewVIC

– If the new user is HH→ invoketacticNewHH

• stratNMQual : Triggered when the video quality of NM is below a thresholdTn.

– If VGW has failed→ invoketacticVGWFail

– If VGW is overloaded→ invoketacticVGWOverload

– If VGW is congested→ invoketacticVGWCongest

– If VGW uses low quality codec→ invoketacticVGWLowQual

• stratVICQual : Triggered when the video quality of VIC is below a thresholdTv.

– If ESMP has failed→ invoketacticESMPFail

– If ESMP is congested→ invoketacticESMPCongest
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In the global configuration strategy, the provider will instantiate the following con-
straints.

• C1: (config.numUnconnectedUsers == 0)

• C2: (NM.videoQuality >= Tn)

• C3: (VIC.videoQuality >= Tv)

Finally, the global configuration strategy instantiates the local adaptation strategies and
adds them to the current configuration as follows.

stratNewUser S1 = new stratNewUser(config);
config.addStrategy(C1, S1)
stratNMQual S2 = new stratNMQual(config);
config.addStrategy(C2, S2)
stratVICQual S3 = new stratVICQual(config);
config.addStrategy(C3, S3)

After the execution of the global configuration strategy is completed, the composed confi-
guration contains the necessary local adaptation strategies and their associated constraints.

5.4 Customization

As seen from the examples in Section 5.1, a provider may want to customize the adapta-
tion strategies according to the current configuration and/or environment. Our architecture
supports three types of customization:strategy selection, dynamic constraint, anddynamic
tactic binding. We now describe these customization mechanisms and discuss our design.

5.4.1 Strategy selection and dynamic constraint

One simple form of customization is strategy selection, i.e., given the current configuration
and environment, only the relevant set of adaptation strategies are instantiated. For exam-
ple, in the video conferencing example above, the adaptation strategy S3 is only applicable
if the current configuration actually uses ESM since S3 handles problems related to the
ESM proxy components. Therefore, S3 should only be instantiated if ESM is used in the
current configuration.

In addition to strategy selection, a provider may want to customize the constraint as-
sociated with a strategy according to the current configuration/environment. For example,
consider again the adaptation strategies for the video conferencing service. A provider may
want to customize the thresholdTh according to the quality requirement specified by the
user request. If high quality is required, the threshold should be set lower to correct quality
problems more aggressively. On the other hand, if the user does not require high quality
(perhaps to reduce the cost), then the thresholds can be set higher.
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Since a constraint is constructed and associated to the corresponding strategy by the
synthesizer during global configuration as described in the previous section, a provider can
easily customize the constraints dynamically in the global configuration strategy. Extending
the video conferencing service example in the previous section, the global configuration
strategy can customize the constraint C2 as follows.

if (request.qualReq == HIGH) {
Th = 0.5

} else {
Th = 0.7

}

ThenC2 can be instantiated the same way as in the previous example. Finally, the global
configuration strategy instantiates the appropriate adaptation strategies as follows.

stratNewUser S1 = new stratNewUser(config);
config.addStrategy(C1, S1)
stratNMQual S2 = new stratNMQual(config);
config.addStrategy(C2, S2)
if (config.isESM == true) {

stratVICQual S3 = new stratVICQual(config);
config.addStrategy(C3, S3)

}

Therefore, in the above example, both the selection of applicable strategies and the con-
straintC2 are customized according to the actual user requirements and/or the current con-
figuration.

5.4.2 Dynamic tactic binding

Another form of customization is to change the actions performed by the strategy according
to the actual configuration and environment. Since the actions for a particular course of
adaptation are grouped into a tactic, tactics become a natural unit of customization. In
other words, a provider can design multiple different tactics that can be used to address
a particular triggering problem such that each of these tactics is suitable under different
configurations/environments.

For example, consider the video conferencing service in Section 5.1. Each conferencing
session can have two possible configurations, ESM and IPM. When the current configura-
tion is IPM, the provider’s goal is to maintain the low service cost. On the other hand, for
an ESM configuration, the goal is to maintain the quality. Now consider the strategyS2
for NM video quality from Section 5.1. The original tactics are suitable for the ESM confi-
guration, but they may be too expensive for the IPM configuration. Therefore, the provider
may design the following additional tactics.

• tacticVGWFail 1: Replace a failed VGW with a low-cost one.
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• tacticVGWOverload 1: Reduce the VGW’s codec quality.

• tacticVGWCongest 1: Reduce the VGW’s bit rate.

• tacticVGWLowQual 1: Do nothing.

Now the provider may want to customize the strategy according to the current configuration
as follows.

• ESM configuration:

– If VGW has failed→ invoketacticVGWFail

– If VGW is overloaded→ invoketacticVGWOverload

– If VGW is congested→ invoketacticVGWCongest

– If VGW uses low quality codec→ invoketacticVGWLowQual

• IPM configuration:

– If VGW has failed→ invoketacticVGWFail 1

– If VGW is overloaded→ invoketacticVGWOverload 1

– If VGW is congested→ invoketacticVGWCongest 1

– If VGW uses low quality codec→ invoketacticVGWLowQual 1

To customize a strategy using the different tactics, we can view the triggering problems
as “symbolic names” for the adaptation tactics. In other words, in a strategy, after the
triggering problem is determined, the strategy invokes a tactic by specifying the symbolic
name. However, the connections between symbolic names and tactics are not established
until the global configuration time, when the synthesizerbindsthe appropriate tactics to the
symbolic names according to the actual configuration/environment. How to perform this
dynamic tactic binding is specified in the global configuration strategy.

In order to support dynamic tactic binding, we extend the recipe APIs by adding the
following functions to handle the symbolic names and binding.

invokeTactic(SymName)
bindTactic(SymName, Tactic)

Now we use the above adaptation strategy as an example to show how dynamic tactic
binding is used. The strategystratNMQual is now implemented as follows.

• If VGW has failed→ invokeTactic("VGWFail")

• If VGW is overloaded→ invokeTactic("VGWOverload")

• If VGW is congested→ invokeTactic("VGWCongest")
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• If VGW uses low quality codec→ invokeTactic("VGWLowQual")

The global configuration strategy will bind the tactics to the symbolic names dynamically
and then instantiates the strategy as follows.

if (config.isESM == true) {
bindTactic("VGWFail", tacticVGWFail)
bindTactic("VGWOverload", tacticVGWOverload)
bindTactic("VGWCongest", tacticVGWCongest)
bindTactic("VGWLowQual", tacticVGWLowQual)

} else {
bindTactic("VGWFail", tacticVGWFail_1)
bindTactic("VGWOverload", tacticVGWOverload_1)
bindTactic("VGWCongest", tacticVGWCongest_1)
bindTactic("VGWLowQual", tacticVGWLowQual_1)

}
stratNMQual S2 = new stratNMQual(config);
config.addStrategy(C2, S2)

Using this approach, the local adaptation strategies can be customized dynamically to
invoke different tactics according to the actual configuration and environment.

5.4.3 Discussion

One key feature of the customization mechanisms described above is that the customization
is performed by the synthesizer at global configuration time. An alternative design is to
have each individual adaptation strategy perform customization on its own. For example, in
the example in Section 5.4.1, we can put the logic for adjusting the thresholdTh inside the
strategyC2. We can also design the strategyC3 so that it checks the global configuration
and do nothing if it is not an ESM configuration. Similarly, the effects of tactic binding in
Section 5.4.2 can be realized by having the strategyC2 check the global configuration and
invoke the appropriate tactics accordingly, or each tactic can check the configuration and
perform the appropriate actions accordingly. Although this alternative approach apparently
works fine in the above simple scenario, there are two potential issues.

• Complexity: Having each strategy perform customization on its own may increase
the complexity of the adaptation strategy design. For example, in order to put the
dynamic constraint mechanism inside individual strategies, a provider also needs to
put constraint monitoring mechanisms inside the strategies and have the synthesizer
invoke each strategy to check if its constraint is violated. Moreover, if the constraints
of multiple strategies are to be customized in the same way, e.g., adjusted according
to the quality requirement (high/low), the provider needs to put essentially the same
logic into each strategy. Similarly, if the tactic bindings of multiple strategies are to
be customized in the same way, e.g., according to whether the global configuration is
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ESM, the provider needs to implement the same logic in each strategy. Furthermore,
every strategy is enabled by default, and the provider needs to design each strategy
so that it checks whether it should actually perform adaptation when invoked.

• Global information: As seen in the examples above, in some cases the customiza-
tion mechanisms may require information about the global configuration or envi-
ronment, for example, the current quality requirement of the user, whether the cur-
rent configuration is ESM or IPM, etc. In our current design where the synthesizer
handles all adaptation strategies, each strategy can obtain such information and per-
form customization on its own. However, an alternative architecture is to leverage
multiple adaptation frameworks that can handle different aspects of run-time adapta-
tion, e.g., architecture-based self-repair [19], utility-based resource allocation [108],
tactic-based remote execution [7], and so on. In such an architecture, each adapta-
tion strategy specified by the provider can be passed on to and handled by a different
adaptation framework. As a result, the global information required for customization
may not be available to each individual strategy when it is invoked. In other words,
in such a scenario customization requiring global information may be infeasible.

To address these issues, our customization mechanisms move the complexity into a sin-
gle location, the global configuration strategy executed by the synthesizer. Of course, one
advantage of the alternative approach above is that customization can be performed with
a finer granularity, i.e., it can react to changes more rapidly instead of only performing
customization at global configuration time. Since the strategies/tactics in our recipe-based
approach are written using a general-purpose programming language, it does not preclude
customization inside individual adaptation strategies. The interaction between customiza-
tion in individual strategies and customization at global configuration time is an area for
further study.

5.5 Coordination

As seen from earlier examples, different adaptation strategies may attempt to change the
service configuration in conflicting ways. Therefore, adaptation coordination mechanisms
are needed to detect and resolve such conflicts. There are two naı̈ve approaches for adapta-
tion coordination,monolithicandindependent. The monolithic approach requires a service
provider to design a monolithic adaptation strategy that incorporates all adaptation logic
and makes all adaptation decisions. This monolithic strategy can be carefully designed to
avoid any conflicts. On the other hand, in the independent approach, different parts of the
system adapt themselves independently without interfering with each other. One example
is a system in which each individual component adapts itself independently. Another ex-
ample is to partition the system into independent parts, each of which then executes its own
adaptation strategy.

One problem with the monolithic approach is that it increases the complexity of the
design of the adaptation strategy since at design time the provider needs to avoid possible
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conflicts among all adaptation cases. Furthermore, it requires coordination mechanisms
to be embedded into the strategy itself, which further increases the development cost. On
the other hand, the independent approach cannot be easily applied in systems where there
may be interactions between adaptations on different parts of the system. Therefore, to
support adaptation coordination, our goal is to only require a service provider to specify
how adaptation coordination should be performed without having to integrate all adaptation
strategies into a single monolithic strategy.

In our architecture, local adaptation strategies are invoked by the synthesizer when their
constraints are violated. When a strategy is invoked, it generates a proposal specifying
what actions should be performed. The proposal is then sent to the adaptation coordinator
(AC). If there are no simultaneous proposals and no other proposals being executed, the
AC accepts the new proposal and informs the synthesizer to execute the proposed actions.
If the AC detects a conflict between simultaneous proposals or between a new proposal and
an ongoing one, it resolves the conflict by rejecting the appropriate proposals.

To coordinate adaptations, we have identified three issues: detecting conflicts between
proposals, resolving conflicts between proposals, and identifying incompatibility between
strategies. When the AC receives multiple proposals, it needs to determine whether there
is a conflict between the proposals, and if there is a conflict, the AC needs to resolve it by
accepting a subset of the proposals and reject the others. On the other hand, a provider may
design two (or more) strategies that adapt the system towards opposite directions/goals. For
example, one strategy adds a new server when an existing server is overloaded, and another
strategy removes a server when existing servers are under-utilized. These two strategies
can potentially cause a cycle of adding/removing a server to/from the service. Therefore,
even though the AC may never see conflicting proposals coming from these two strategies,
our architecture needs to be able to identify such cases where multiple strategies work at
cross purpose.

As discussed earlier, since we focus on local adaptations, we only consider the “di-
rect” effects of an adaptation. As a result, conflicts between adaptations can be clearly
defined. We do not try to solve the general coordination problem where every adaptation
can potentially affect the whole configuration and thus can potentially conflict with all other
adaptations. Next, we discuss how we address the three coordination issues.

5.5.1 Conflict detection

Let us first define what a “conflict” is. One simple form of conflict is when two proposals
want to make “conflicting changes” to the configuration. For example, if one proposal
wants to replace server A with B, and another proposal wants to replace A with C, then
obviously the two proposals cannot both be accepted. In other words, the actions of these
two proposals attempt to make changes to the same “target” in different ways. The AC can
automatically detect such conflicts by looking at the actions in the different proposals.

On the other hand, there are also cases where the actions of two proposals do not con-
flict, but the “intentions” of the proposals may be conflicting. For example, suppose one
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strategy S1 connects a new VIC user to the closest ESMP in the current configuration, and
another strategy S2 replaces a failed ESMP with a new one. Suppose there are three ESMPs
(A, B, and C) in the current configuration. Now user U wants to join the video conference,
and at the same time C fails; therefore, both strategies S1 and S2 are invoked. Among A, B,
and C, B is closest to U, so S1 proposes to connect U to B. At the same time, S2 proposes
to replace C with D. However, D is actually closer to U than B is. This example presents
an interesting question: should the AC identify these two proposals as a conflict?

The answer to this question is in fact service-specific, i.e., the AC cannot automatically
decide if there is a conflict or not. While one provider may want to delay the new user join
until after C has been replaced with D in order to achieve a more optimal configuration,
another provider may rather use the sub-optimal configuration so that the new user join
will not be delayed. We can look at this from a different point of view: S1 is addressing
the triggering problem of “new VIC user”, and S2 is addressing the problem of “ESMP
failure”. Knowing that a new VIC user needs to be connected to an ESMP, the provider
needs to decide that, if the two problems occur at the same time, whether they can be
addressed simultaneously or should be addressed one after the other. In other words, the
provider needs to decide whether there is a “problem-level conflict” when the two problems
occur simultaneously.

Based on the above observations, we categorize conflicts into two types.

• Action-level: When two proposals P1 and P2 contain actions that change the same
target in different ways, it is an action-level conflict. As mentioned above, the AC
can automatically detect such conflicts by comparing the actions in the different pro-
posals. If action A1 from P1 and action A2 from P2 have the same “target” (e.g.,
both want to replace the VGW), the AC will identify this as a conflict and will only
accept one of the proposals.

• Problem-level: A problem-level conflict occurs between two proposals if they ad-
dress triggering problems that conflict with each other. As discussed above, such
conflicts are service-specific, and therefore, they need to be explicitly identified by
the provider in its service recipe.

We extend the recipe API as follows to allow a provider to specify its service-specific
problem-level conflicts. As described earlier, the triggering problems in adaptation strate-
gies are represented as symbolic names for the appropriate tactics. Therefore, a provider
can specify a conflict between two problems using their symbolic names. To support such
specifications, the following function is added to the recipe APIs.

addProblemConflict(PName1, PName2)

Now we use the same video conferencing service example from previous sections to il-
lustrate how problem-level conflicts are specified. Suppose the symbolic names for the
triggering problems in the example are: ”NewNM”, ”NewVIC”, ”VGWFail”, ”VGWOver-
load”, ”VGWCongest”, ”VGWLowQual”, ”ESMPFail”, and ”ESMPCongest”. The pro-
vider can specify the problem-level conflicts among them by adding the following to the
global configuration strategy.
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Figure 5.5: Two conflict resolution approaches.

config.addProblemConflict("NewNM", "VGWFail")
if (config.isESM == true) {

config.addProblemConflict("NewNM", "VGWOverload")
config.addProblemConflict("NewNM", "VGWCongest")
config.addProblemConflict("NewVIC", "ESMPFail")
config.addProblemConflict("NewVIC", "ESMPCongest")

}

Note that there are more conflicts when the current configuration is using ESM. This is
because of the additional adaptation strategy S3 for the ESM configuration and the custo-
mization of the other strategies as described earlier.

When the synthesizer executes the global configuration strategy, the appropriate prob-
lem-level conflicts are added to the current configuration. After the execution is completed,
the synthesizer constructs a coordination policy that represents the problem-level conflicts
for the current configuration (e.g., as a “conflict matrix”), and the policy is sent to the
AC. At run time, when an adaptation strategy proposes adaptation actions, the proposal
includes the name of the problem that it is addressing. Therefore, the AC can look up the
coordination policy to detect problem-level conflicts between different proposals.

5.5.2 Conflict resolution

We identify two different approaches for resolving conflicts between proposals, as shown in
Figure 5.5. There are six proposals, and conflicts exist between p1 and p2, between p2 and
p3, and between p4 and p5. In addition, p2 has a higher priority than p1 (p2> p1), p2>
p3, and p4> p5. We now briefly describe the two different conflict resolution approaches.
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• First-Come, First-Serve (FCFS): This approach accepts/rejects proposals as they are
received. If a proposal is received when no other proposals are being executed, then
it is accepted. On the other hand, if a proposal is received when another proposal is
being executed, the AC performs conflict detection between the two proposals. If a
conflict is detected, the newly received proposal is rejected.

In the figure, p2 is rejected because p1 is proposed earlier and is being executed, and
similarly, p5 is rejected since p4 is in progress. On the other hand, p6 is allowed to
start since there is no conflict between p4 and p6.

• Epoch/priority: This approach divides time into discrete periods, i.e., epochs. At the
end of an epoch, the AC performs conflict detection among all proposals received
within the epoch. If two proposals conflict with each other, for example, the one
with the higher priority is accepted and the other rejected. Priorities are assigned to
the adaptation tactics by the provider according to the service-specific coordination
knowledge.

In the figure, p1, p2, and p3 falls in the first epoch, and only p2 is allowed to be
executed because of the conflicts and priority among them. Similarly, in the second
epoch, p5 is rejected.

We can see that the FCFS approach supports more limited conflict resolution while the
epoch/priority approach is more flexible. However, the flexibility of the epoch/priority ap-
proach is gained by sacrificing the “agility” of dynamic adaptation: all proposals within
an epoch have to wait until the end of the epoch. Furthermore, in the literature, the
epoch/priority approach is used in, for example, the active database domain to coordinate
rules that specify actions to be executed upon the occurrence of particular events [76, 22].
In such a context, one can assume that, in our terminology, all related events occur simulta-
neously and trigger all related “proposals” instantaneously, the proposals are all received si-
multaneously, and all actions can be finished instantaneously. Based on these assumptions,
the epoch/priority approach can be used effectively without delaying the actions. However,
in the context of coordinating adaptations for self-configuring services, such assumptions
are not realistic for the following reasons.

• Events (e.g., component failure, bandwidth fluctuation, user preference change) may
occur independently at any time.

• When an adaptation strategy is triggered by an event, it needs to determine the trig-
gering problem, which may require heavy-weight operations such as network mea-
surement. As a result, there will be a delay between the occurrence of the event and
the proposal reaching the AC.

• Executing an adaptation action, e.g., starting a server, in this context may require a
relatively long period of time when compared to, e.g., the time it takes to update a
database.
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Therefore, to use the epoch-based approach for coordinating the adaptations in our con-
text, complex heuristics may be needed to handle the many epoch-related issues resulting
from realistic constraints. For example, we need heuristics to determine the optimal size for
the coordination epochs, decide when a new epoch should be started, and so on. Further-
more, since we focus on performance-related adaptations, it may not be desirable to delay
adaptation actions for coordination. Therefore, the FCFS approach is more appropriate for
our purposes. Although conflict resolution in the FCFS approach may result in sub-optimal
solution (e.g., a more important proposal is rejected because it is received later), it has
the advantage that coordination decisions are made quickly without delaying adaptation
actions.

5.5.3 Identifying incompatibility

To prevent adaptation strategies from working at cross purpose, we need to identify adap-
tation strategies that are incompatible with each other. This is in general a very difficult
problem because a provider may intentionally design two adaptation strategies that have
opposite goals. For example, one strategy adds a new server when an existing one is over-
loaded, and another strategy removes a server when existing servers are under-utilized.
These two opposite strategies are intended to maintain the system in a particular operational
region. However, if the triggering conditions for these strategies are not defined carefully,
they can potentially cause a “cycle” of adding/removing a server to/from the service.

If we want to automatically determine whether such cycles exist for any given pair of
strategies, we need to be able to automatically determine the exact effects of the strategies
(e.g., how much load is reduced by adding a server) and analyze the triggering conditions
to determine if one strategy’s effects will trigger another strategy. Such analysis is difficult
since it likely requires domain knowledge, and the exact run-time effects of adaptation may
be difficult to determine.

Instead of trying to solve the general problem, we observe that it is usually sufficient if
we can identify strategies that have opposite goals (and thus may cause undesirable cycles)
and then warn the provider of such potential problems. The provider can then verify that the
opposite goals are intentional and make sure that the combination of triggering conditions
and effects should not cause cycles.

To automatically identify incompatible adaptation strategies, we need to capture the
cause and effect of each strategy. We observe that a strategy is triggered by a “directional
change” (i.e., increase or decrease) in one property of the configuration (or multiple proper-
ties) such as a particular performance metric, and the effect of a strategy can be summarized
as a directional change in one property or multiple properties. If the effect of one strategy
changes a particular property along the direction that may cause another strategy to be
invoked and vice versa, then a potential cycle exists.

Using the gaming service in Section 5.1 as an example, the “split” strategy may be
triggered when the “load” property increases (“load+”), and its effect is a decrease in load
(“load-”). On the other hand, the “merge” strategy may be triggered by “load-”, and it
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causes “load+”. Given this information, the potential cycle between the strategies can be
automatically detected and reported to the provider.

Note that so far we have discussed incompatibility at the strategy level. However, since
the unit of coordination in our architecture is tactic, we need to analyze incompatibility at
the tactic-level since different tactics in the same strategy may have different causes and
effects.

To support such automatic analysis, the causes and effects of tactics can be “annotated”
by the provider when designing the tactics. When the synthesizer instantiates and cus-
tomizes the appropriate adaptation strategies and tactics during global configuration, it can
use these cause/effect annotations to detect potential cycles between the tactics.

The recipe APIs are extended to support the cause/effect annotation as follows. The an-
notations need to identify the properties that are changed and the directions of the changes.
For now we assume that the properties of interest are performance metrics, which can be
specified using the objective function API. Therefore, the following functions can be used
to specify the metrics whose increase and decrease may invoke a particular tactic and the
metrics that may be increased and decreased by the tactic.

addTacticCauses(Tactic t, List increasedMetrics,
List decreasedMetrics)

addTacticEffects(Tactic t, List increasedMetrics,
List decreasedMetrics)

In the gaming service example above, after the tacticssplitT andmergeT are in-
stantiated in the global configuration strategy, they can be annotated as follows.

// s1 { load }, s2 { }, s3 { }, s4 { load }
addTacticCauses(splitT, s1, s2);
addTacticEffects(splitT, s3, s4);

// m1 { }, m2 { load }, m3 { load }, m4 { }
addTacticCauses(mergeT, m1, m2);
addTacticEffects(mergeT, m3, m4);

After all tactics are instantiated and bound to the adaptation strategies, the synthesizer can
analyze the annotations and discover the potential cycle betweensplitT andmergeT .

5.6 Implementation

As mentioned earlier, our prototype implementation is based on the recipe-based self-
configuration architecture described in the previous chapters. The additional knowledge
specifications necessary for local adaptation strategies, customization, and coordination
are supported by extending the original recipe APIs, and the table in Figure 5.6 summa-
rizes these new extensions. Correspondingly, the synthesizer is extended to support these
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Data structure
RelationOp Represent relation operators such as “==”, “ >=”, etc.
BooleanOp Represent boolean operators such as “AND”, “OR”, etc.
Condition Represent a combination of “Term RelationOp Term ”.
Constraint Represent a combination of “Condition BooleanOp Condition ”.
Tactic Represent the base class for a tactic; providers implement tactics by cre-

ating specializations.
Strategy Represent the base class for a strategy; providers implement strategies

by creating specializations.

Function
replaceComponent(c) Represent an adaptation action that replaces an ex-

isting componentc in the current configuration.
changeParameter(pn,pv) Represent an adaptation action that changes the

value of the parameterpn of a component topv .
connect(c1,c2) Represent an adaptation action that connects com-

ponentsc1 andc2 .
setTacticObjective(obj) Set the component selection objective for a tac-

tic to obj , which will be used for, e.g., the
replaceComponent actions.

addStrategy(S,C) Add the adaptation strategyS for run-time adapta-
tion and associate it with constraintC.

invokeTactic(N) Used in an adaptation strategy to invoke the tactic
that is bound to the symbolic problem nameN.

bindTactic(N,T) Bind the tacticT to the triggering problem repre-
sented by the symbolic nameN.

addProblemConflict(N1,N2) Specify a problem level conflict between two trig-
gering problems represented by the symbolic names
N1 andN2.

addTacticCauses(T,IL,DL) Annotate the tacticT to specify its causes.IL is
a list of metrics that, when increased, may trigger
T. DL is a list of metrics that, when decreased, may
triggerT.

addTacticEffects(T,IL,DL) Annotate the tacticT to specify its effects.IL is a
list of metrics that may be increased byT. DL is a
list of metrics that may be decreased byT.

Figure 5.6: Extensions to the recipe APIs for adaptation support.

new functionalities, e.g., associating constraints with adaptation strategies, binding tactics
to triggering problems, customizing and triggering adaptation strategies, executing tactics,
and so on. The new architectural element for run-time adaptation support is the adaptation
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coordinator (AC). In our current prototype, the AC is implemented as a sub-module of the
synthesizer so that they can communicate with each other easily.

5.7 Evaluation

To evaluate our architecture, we want to (1) show that the coordination mechanisms work
correctly and do not introduce unreasonable overhead and (2) demonstrate the flexibility
of adaptation customization. Our evaluation is based on simulations of the massively mul-
tiplayer gaming service described earlier. Below we summarize the key properties of the
simulations.

Service components. There are two types of nodes in a service configuration: users and
servers. Each user moves around randomly in the virtual game space, and each server
handles a partition of the space (i.e., all users within that space). The service quality ex-
perienced by a user is a function of the current load of its server: when the load is below
0.5, the quality is 1.0; when load is higher than 1.0, the quality is 0.0; when the load is
between 0.5 and 1.0, the quality decreases linearly. The service has at its disposalNp “pri-
mary servers” and an unlimited number of “emergency servers”. Each server has capacity
S (i.e., can handleSusers). When added to the service configuration, each primary server
has a cost of 1.0, and each emergency server has a cost ofCe.

Global configuration. The global configuration strategy of the service composes a ser-
vice configuration that consists ofdNu

Tg
e servers, whereNu is the current number of users,

andTg is a provider-specified threshold that limits the maximum number of users on any
server after global configuration. The strategy partitions the game space among the servers
so that each server handles (nearly) the same number of users. At run time, the global con-
figuration strategy is invoked periodically with intervalIg, and we assume that it returns a
proposal that will be coordinated with the other adaptation strategies described below.

Adaptation strategies. As mentioned earlier, the self-configuring service has five adap-
tation strategies:join connects a new user to the corresponding server,leavedisconnects a
user from its server,crossmoves a user’s state from one server to another when the user
moves between servers,split adds a new server when an existing server’s load goes above
To, andmergeremoves a server by merging two servers when their loads are belowTu.
To andTu are thresholds specified by the provider. Note that each of these strategies only
invokes one tactic, so the names also refer to the tactics.

Let tp denote the time between triggering and proposal, andte denotes the execution
time of a proposal. We assume the following in the simulations.

tp =
{

10ms for join, leave, and cross
20ms for split and merge
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te =
{

100ms for join, leave, and cross
500ms for split and merge

Since at run time global configuration is treated as an adaptation, we assume thattp and
te for global configuration are 40 and 2000 ms, respectively.

Customization. The thresholdsTo and Tu are customized at global configuration time
according to the total load of the servers:(To = ToL + (ToH −ToL) ·F) and (Tu = TuL +
(TuH−TuL) ·F). F = ((Nu/(Np ·S))−H)/(1.0−H), whereH is the load threshold beyond
whichTo andTu move fromToL andTuL towardsToH andTuH, respectively.

In other words, when the synthesizer executes the global configuration strategy, it car-
ries out the above calculations and sets the thresholds for the split and merge strategies
accordingly.

Coordination. The adaptation tactics can be divided into two sets,S1 = {split,merge}
andS2 = {join, leave,cross}, and the provider specifies the following set of problem-level
conflicts in the global configuration strategy:

{(t1 ↔ t2)|t1 ∈ S1, t2 ∈ S2}.

As discussed in Section 5.5, the tactics can be annotated with their causes and effects so
that the potential incompatibility between the split and merge tactics can be detected.

Simulator. We generate traces of user arrivals and departures with inter-arrival timeIa
and stay durationId. Ia has an exponential distribution, andId has a bounded Pareto distri-
bution with minimum 30 seconds, maximum 10.8K seconds, andα = 1.5. We implemented
an event-driven simulator that takes such a trace as input and simulates the gaming service
as described above. The simulator is integrated with the synthesizer, which interprets our
recipe specifying the adaptation knowledge described above. The simulation resolution is
10 ms, i.e., each simulation round simulates 10 ms.

During each simulation round, the simulator processes new events from the traces, exe-
cutes the appropriate tactics to produce new proposals, coordinates (i.e., accepts or rejects)
proposals, and executes accepted proposals. We assume that, if applicable, rejected propos-
als will be re-proposed by their corresponding tactics as soon as possible. In other words, a
rejection will cause the rejected adaptation to be delayed. To prevent “starvation”, we also
assume that the re-proposals are processed on a FCFS basis, i.e., a re-proposal that was
first rejected at timet0 has precedence over another re-proposal first rejected at timet1 if
(t0 < t1).

Next, we present the simulation results.

5.7.1 Coordination

In this section, we show that the coordination mechanisms work as expected and do not
introduce unreasonable adaptation delay under the simulation settings. We present simu-
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Figure 5.7: Number of users/servers during simulation: hi-load-ng.

lation results without the dynamic constraint customization, i.e., thresholdsTo andTu are
set to 40 and 10 throughout the simulations.S is set to 45,Ce = 3.0, andTg = 22. The
simulation duration for all results is 30K seconds. We experimented with two different user
loads in our simulations. In thehi-load setting, theE[Ia] is 400 ms, and it is 600 ms in
the low-load setting. Therefore, the average number of users in the system is 213.17 and
142.12 for hi-load and low-load, respectively. In addition,Np is set to 11 and 7 for hi-load
and low-load, respectively.

Adaptation delay

In the first set of simulations, there are no periodic global configurations, i.e., the service
configuration is adapted using only the local adaptation strategies. We useng (“no-global”)
to label the results of these simulations, and we compare the results ofhi-load-ng andlow-
load-ng. First, let us look at how the service configuration evolves as adaptations are
applied to the system. Figures 5.7 and 5.8 show the numbers of users and servers during
the simulation for hi-load-ng and low-load-ng, respectively. We can see that in both cases,
the number of simultaneous users matches the number calculated from the average. We
can also see that the local adaptation strategies are successful in maintaining the number of
servers within a relatively small range. The results show that the adaptation strategies are
working as expected.

Now we look at how the coordination mechanisms affects the adaptation time, which is
defined as the time from when an adaptation strategy is triggered to when the adaptation is
finished. In other words, if all proposals are allowed to execute without coordination, then
the adaptation time is 110 ms for join/leave/cross and 520 ms for split/merge. Since the
results for join, leave, and cross are very similar (and similarly for split and merge), below
we present the adaptation time during simulation for join and split. Figures 5.9 and 5.10
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Figure 5.8: Number of users/servers during simulation: low-load-ng.

Figure 5.9: Adaptation time for join during simulation: hi-load-ng.

show the adaptation time for joins in hi-load-ng and low-load-ng, respectively. Figures 5.11
and 5.12 show the adaptation time for splits in hi-load-ng and low-load-ng, respectively.
We can see that most joins (and similarly leaves and crosses) are at their minimum 110 ms,
i.e., they do not encounter any conflicts and are not delayed by the coordination mecha-
nisms. On the other hand, most splits (and similarly merges) are delayed and take more
than the minimum 520 ms. To confirm this, we calculate the percentage of each type of
adaptation that are delayed by coordination. The tables in Figure 5.13 shows the results
for hi-load-ng and low-load-ng, and they confirm our observations. We can see that there
is a large difference in the percentage of delayed adaptations between join/leave/cross and
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Figure 5.10: Adaptation time for join during simulation: low-load-ng.

Figure 5.11: Adaptation time for split during simulation: hi-load-ng.

split/merge. The reason is that the number of split/merge adaptations is very small com-
pared to join/leave/cross. Therefore, when a join/leave/cross is proposed, it is unlikely to
conflict with an on-going split/merge. On the other hand, when a split/merge is proposed,
it is likely to conflict with an on-going join/leave/cross. Another interesting result is that
join/leave/cross are more likely to be delayed in hi-load-ng than in low-load-ng. This is be-
cause there are almost 10 times as many split/merge in hi-load-ng than in low-load-ng. As
a result, a join/leave/cross proposal is more likely to encounter an on-going split/merge and
be delayed. Finally, there are much more cross adaptations in hi-load-ng than in low-load-
ng. The reason is that, as we have seen earlier, the number of servers in hi-load-ng is more
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Figure 5.12: Adaptation time for split during simulation: low-load-ng.

hi-load-ng
Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 74888 2045 2.73
leave 74674 3268 4.38
cross 15027269 421961 2.81
split 7332 6550 89.33
merge 7301 6869 94.08

low-load-ng
Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 50149 258 0.51
leave 49992 384 0.77
cross 6194675 38146 0.62
split 789 715 90.62
merge 783 746 95.27

Figure 5.13: Number and percentage of delayed adaptations: hi-load-ng and low-load-ng.

than that in low-load-ng, and therefore, users are more likely to cross server boundaries in
hi-load-ng.

To further investigate the impact of the delays caused by the coordination mechanisms,
we look at the adaptation time distribution of the delayed adaptations. Again, because of
the similarity between different adaptation, we only present results for join and split. Fig-
ures 5.14 and 5.15 show the adaptation time distributions for joins and splits, respectively.
First, we can see that although there are more conflicts in hi-load-ng than in low-load-ng,
resulting in more delayed adaptations, the distributions of adaptation time in hi-load-ng and
low-load-ng are very similar. For join (and similarly for leave/cross), the adaptation delays
(i.e., adaptation time minus the minimum 110 ms) are distributed roughly uniformly, and
the maximum delay is around 600 ms. Although the worst-case delay is bad, the overall im-
pact of delays of join/leave/cross is not significant because, as we see above, only a small
percentage of the join/leave/cross adaptations are affected. On the other hand, although
most splits/merges do encounter conflicts, the adaptation time in most cases is still below
620 ms. Given that split and merge are rare (compared to the others) and that they are
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Figure 5.14: Adaptation time distribution for delayed joins.

Figure 5.15: Adaptation time distribution for delayed splits.

expensive (520 ms) even without conflicts, the additional delay caused by the coordination
mechanisms also does not have a significant overall impact.

To summarize, the results show that using our coordination mechanisms, the majority
of adaptations will not experience delays caused by coordination as long as the adaptation
actions can be completed in a relatively short time. Even for adaptations that take a long
time to complete, the overall impact of the delays caused by coordination is not significant
if such more expensive adaptations are not invoked very frequently. Therefore, our coor-
dination mechanisms should work well for most services since we expect that expensive
adaptations should be much less frequent than inexpensive ones in general.
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Quality Cost
low-load-ng 0.9573 0.0567
low-load-g 0.9506 0.0598
hi-load-ng 0.9666 0.1014
hi-load-g 0.9452 0.0864

Figure 5.16: Quality and cost: no-global vs global.

Effects of periodic global configuration

In the second set of simulations, we add periodic global configurations withIg = 1500
seconds. We useg (“global”) to label the results of these simulations, and we compare the
results ofhi-load-g andlow-load-g. We now look at the benefits and overhead of periodic
global configuration.

Benefits of periodic global configuration. The benefit of adding global configuration
is that a global view can be used to optimize the resulting service configuration. For this
service, the two metrics for evaluating the service are quality and cost as defined earlier.
Since quality is a metric of individual servers, it can be addressed sufficiently well by the
local adaptation strategy split. On the other hand, cost is a metric of the collection of
servers used. Since the merge strategy is only invoked when two adjacent servers are both
underutilized, in the worst case no servers can be merged even if half of the servers are
underutilized (but no two are adjacent).

While the local merge strategy may miss some opportunities for reducing the cost,
global configuration can redistribute the load evenly using a smaller number of servers,
i.e., global configuration can “merge” non-adjacent servers. However, how effective this is
depends on the number of servers in the configuration. For example, if 2 out ofn servers
are underutilized, the 2 underutilized servers aren−3

2 times as likely to be non-adjacent as
to be adjacent. In other words, asn increases, they are more likely to be non-adjacent.
Therefore, in our simulation settings, we would expect that periodic global configurations
will have a more significant benefit when the load (and therefore the number of servers) is
higher.

The table in Figure 5.16 summarizes the average quality and the average cost observed
in both no-global (from the previous section) and global simulations. We can see that when
the load is low, adding global configuration actually slightly increases the overall cost. The
reason is that since the number of servers are low, when a global configuration redistributes
the load, it is more likely to increase the number of servers (so that each server has less than
Tg users) than to decrease it. In the hi-load simulations (hi-load-ng and hi-load-g), adding
global configuration is able to reduce the average cost by roughly 15%. This confirms
our intuition that the effectiveness of global configuration increases with the load for the
strategies used in the simulations.

One interesting issue that arises from combining local adaptation with periodic global
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Figure 5.17: Adaptation time for join during simulation: hi-load-g.

configuration is how to “align” the “goals” of local adaptation and global configuration?
Obviously, the global configuration strategy and the local adaptation strategies cannot have
identical goals since they are designed for different scopes. In the above example, the
global goal is to “maintain a minimum quality with the least cost”, and the local goals are
to “increase quality” (split) and to “decrease cost” (merge). We can see that the individual
local goals in fact are contradictory to the global goal: split increases the cost, and merge
decreases the quality. However, the combination of the split and merge strategies results in
a rough alignment with the global goal. As we discuss later, there has been related work
looking at similar issues, for example, given a global objective function how to derive local
objective functions for individual system components. In this dissertation, we assume that
the provider takes the alignment issue into consideration when designing the adaptation
strategies. How to solve the general problem is an area for further study.

Overhead of periodic global configuration. On the other hand, adding periodic global
configurations is likely to increase the delay caused by coordination since a global configu-
ration “conflicts” with all the local adaptations. Therefore, we now look at the adaptation
time for each type of adaptation during the global simulations. Note that after a global con-
figuration is completed, any previously pending crosses/splits/merges are no longer neces-
sary and are therefore removed in the simulations. Therefore, the adaptation time in such
cases is defined as from the triggering of the adaptation to the completion of the global
configuration. In contrast, joins/leaves that are delayed by a global configuration need to
be re-proposed after the global configuration is completed.

First, we use join as an example to illustrate the effect of global configuration during
the simulations. Figures 5.17 and 5.18 show the adaptation time for join in hi-load-g
and low-load-g, respectively. We can see that the majority of the adaptations fall within
the range observed in the previous hi-load-ng and low-load-ng results, i.e., 110 to 620 ms.
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Figure 5.18: Adaptation time for join during simulation: low-load-g.

hi-load-g
Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 74888 5231 6.99
leave 74674 8122 10.88
cross 13637992 1056223 7.74
split 18536 16182 87.30
merge 18396 17113 93.03

low-load-g
Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 50149 475 0.95
leave 49992 657 1.31
cross 6248286 59978 0.96
split 1251 1148 91.77
merge 1233 1187 96.27

Figure 5.19: Number and percentage of delayed adaptations: hi-load-g and low-load-g.

However, there are spikes that reach around 2000 ms, which is roughly the duration of a
global configuration, and if we look at the timing of these spikes, we can see that they
correspond to the periodic invocations of global configuration. The results of other types of
adaptations are similar. To take a closer look, we calculate the percentage of each type of
adaptation that are delayed by the coordination mechanisms. The results are summarized in
the tables in Figure 5.19. The main difference between the results here and the results from
the no-global simulations (Figure 5.13) is that the percentage of delayed join/leave/cross in
hi-load-g/low-load-g is roughly a factor of 2 to 3 higher than that in hi-load-ng/low-load-
ng. To explain the difference, we compare the adaptation time distribution of the delayed
join/leave/cross in hi-load-g/low-load-g and hi-load-ng/low-load-ng. Since the results of
hi-load and low-load are similar, and join/leave/cross are also similar, here we present the
results of adaptation time distribution of delayed joins in hi-load-g and hi-load-ng, shown in
Figure 5.20. We can see that in hi-load-g, the distribution has two pieces. The lower piece
corresponds to the delays caused by conflicts with split/merge adaptations since it has the
same range as the distribution in hi-load-ng. The higher piece corresponds to delays caused
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Figure 5.20: Adaptation time for delayed joins during simulation: hi-load-g and hi-load-ng.

Figure 5.21: Cumulative number of splits during simulation: hi-load-g and hi-load-ng.

by conflicts with the periodic global configurations. Therefore, the increase in conflicts is a
result of both the addition of conflicts with global configuration and an increase in conflicts
with split/merge.

Furthermore, the reason for the increase in the conflicts with split/merge is that there
are more splits/merges in the global case than in the no-global case. This is demonstrated
in Figure 5.21, which shows the cumulative number of splits during simulation in hi-load-
g and hi-load-ng. The results for the low-load cases and for merge are similar and are
therefore not presented. We can see that the service configuration in hi-load-ng “stabilizes”
after a while, i.e., the frequency of splits decreases after the initial ramp-up. On the other
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hand, in hi-load-g the number of splits keeps increasing at roughly constant rate. As a
result, more split/merge adaptations are proposed when period global configurations are
added, resulting in more conflicts between join/leave/cross and split/merge.

To summarize, adding periodic global configuration to run-time adaptation can be bene-
ficial when achieving a particular adaptation goal (cost reduction in the above example) re-
quires global knowledge. On the other hand, because of the additional overhead caused by
coordination between local adaptation and global configuration, a service provider should
evaluate the trade-off between the benefit and the overhead to determine the frequency of
periodic global configuration.

Different coordination policies

The coordination policies used in the simulations above are expressed using the recipe APIs
as follows.

config.addConflict("JOIN", "OVERLOAD");
config.addConflict("JOIN", "UNDERUTILIZE");
config.addConflict("LEAVE", "OVERLOAD");
config.addConflict("LEAVE", "UNDERUTILIZE");
config.addConflict("CROSS", "OVERLOAD");
config.addConflict("CROSS", "UNDERUTILIZE");
config.addConflict("JOIN", "GLOBAL");
config.addConflict("LEAVE", "GLOBAL");
config.addConflict("CROSS", "GLOBAL");
config.addConflict("OVERLOAD", "GLOBAL");
config.addConflict("UNDERUTILIZE", "GLOBAL");

Using our recipe-based approach, implementing a different set of coordination policies is
very straightforward since the provider does not need to worry about the low-level coordi-
nation mechanisms. As an example, assume that the provider of the above gaming service
improves the game server implementation such that it is able to handle a leaving user in
parallel with any other adaptations. In other words, the “leave” adaptation now does not
conflict with any other adaptations. To take advantage of this new capability, the provi-
der can simply modify the recipe by removing the lines specifying conflicts that involve
“leave”. This results in the following policies.

config.addConflict("JOIN", "OVERLOAD");
config.addConflict("JOIN", "UNDERUTILIZE");
config.addConflict("CROSS", "OVERLOAD");
config.addConflict("CROSS", "UNDERUTILIZE");
config.addConflict("JOIN", "GLOBAL");
config.addConflict("CROSS", "GLOBAL");
config.addConflict("OVERLOAD", "GLOBAL");
config.addConflict("UNDERUTILIZE", "GLOBAL");
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low-load-ng-noLC
Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 50149 184 0.37
leave 49992 0 0
cross 6375261 28528 0.45
split 623 573 91.97
merge 613 587 95.76

low-load-ng
Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 50149 258 0.51
leave 49992 384 0.77
cross 6194675 38146 0.62
split 789 715 90.62
merge 783 746 95.27

Figure 5.22: Number and percentage of delayed adaptations: low-load-ng-noLC and low-
load-ng.

Figure 5.23: Cumulative number of splits during simulation: low-load-ng-noLC and low-
load-ng.

We perform another set of simulations to verify that such changes in the recipe indeed
results in expected coordination behavior at run time. The simulation parameters are the
same as low-load-ng except for the recipe differences discussed above, and we label this set
of results low-load-ng-noLC (“no leave conflicts”). We now look at the the percentage of
delayed adaptations in low-load-ng-noLC and how it differs from the low-load-ng results.
Figure 5.22 shows the comparison. Of course, as expected, no leave adaptations are delayed
in low-load-ng-noLC, i.e., no conflict. Furthermore, we can see that eliminating conflicts
that involve leave adaptations actually results in fewer split/merge adaptations. Figure 5.23
shows the cumulative number of split during simulation for low-load-ng-noLC and low-
load-ng (result for merge is similar). We can see that in low-load-ng-noLC, the frequency
of split decreases after about half-way into the simulation. In other words, the removal of
conflicts with leave adaptations actually helps stabilize the service configuration, resulting
in fewer split/merge adaptations. In turn, this allows more join/cross adaptations to be
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Figure 5.24: Number of users during simulations.

executed without delay, as demonstrated by the lower percentage in Figure 5.22. Finally,
because the users now spend less time “waiting” (i.e., delayed by conflicts), they have more
time to move around in the game space, and this results in an increase in the number of cross
adaptations in low-load-ng-noLC.

To summarize, this example demonstrates that our recipe-based approach allows a ser-
vice provider to easily implement service-specific coordination policies without worrying
about the actual coordination mechanisms.

5.7.2 Customization

In this section, we illustrate how the synthesizer can use a provider’s service-specific cus-
tomization knowledge to customize the local adaptation strategies according to the actual
configuration and environment, and more specifically, how the triggering constraints of
strategies can be customized to achieve the provider’s desired outcomes.

We perform simulations using the same gaming service scenario as in the previous
section. We look at how the split and merge thresholdsTo andTu can be customized to
achieve the provider’s goals in two different scenarios. In the first scenario, the provider’s
primary goal is to maintain the average cost at about 0.1 unit per user, and the secondary
goal is to provide good quality under the cost constraint. We label this the “constant-cost”
scenario. In the second scenario, the provider’s primary goal is to maintain the average
service quality at around 0.95, and the secondary goal is to lower the cost under the quality
constraint. We label this the “constant-quality” scenario.

For the simulations, we generate a user trace with duration 20K seconds, and to simulate
a change in the environment,E[Ia] in the first 10K seconds is set to 600 ms, andE[Ia] in
the second half is 400 ms. In other words, the load in the second half of the simulations
is higher than that in the first half. This change in load can be seen in Figure 5.24, which
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Figure 5.25: Overall average quality: no customization.

Figure 5.26: Overall average cost: no customization.

shows the number of users during one of the simulations (results from other simulations
are similar). For all simulations,S is set to 40,Ce = 3.0, Np = 10, andIg is 1K seconds.

First, we look at the results for adaptation without constraint customization, i.e.,To

andTu are set to fixed values throughout the simulations. We perform three simulations
with three different pairs of static (To, Tu) values: (35, 10), (30, 8), and (25, 6), and we
label these experiments 35/10, 30/8, and 25/6.Tg is set to 20, 18, and 16 for the three
simulations, respectively. Note that with a lowerTo, the split strategy will be applied more
aggressively. On the other hand, with a lowerTu, the merge strategy will be applied less
aggressively. Therefore, using lower values forTo andTu should result in higher quality
and higher cost.

Figure 5.25 shows the overall average quality of the three simulations. The overall
average quality of a simulation is computed by first computing the average quality of all



142 CHAPTER 5. RUN-TIME ADAPTATION

users in each simulation round (10 ms) and then computing the average of all rounds. In
the figure, we present the overall average quality for the first half and the second half of
the simulations. Similarly, we present the overall average cost results in Figure 5.26. We
can see that in all three simulations, the quality in the second half is noticeably worse
than that in the first half due to the higher load, and yet the cost in the second half is still
significantly higher than that in the first half. In terms of the constant-cost scenario, we can
see that among the three different static settings, only 35/10 comes close to maintaining
the overall average cost below 0.1 in both halves of the simulation. However, in the first
half, it only spends about 60% of the allowed budget, resulting in unnecessarily low quality,
and therefore, it does not achieve the secondary goal in this scenario. On the other hand,
for the constant-quality scenario, only 25/6 can achieve the primary goal of maintaining
the overall average quality around 0.95. However, in the first half, it actually achieves
noticeably higher quality than the provider’s constraint, resulting in unnecessarily high
cost, and therefore, it does not achieve the secondary goal.

These results show that the goals in the two scenarios cannot be satisfied by the three
static settings. They also suggest that in order to maintain constant cost, the split/merge
strategies need to be less aggressive when the load is high. Similarly, in order to maintain
constant quality, the strategies need to be more aggressive when the load is high. Based
on these observations, we devise the following two ways to customize the strategies. The
parameters in these customization schemes are derived through experimentation.

• constCost: The triggering constraints for split/merge are customized by settingToL,
ToH, TuL, andTuH to 30, 60, 8, and 20, respectively. Note that althoughToH is 60,
the maximum value ofTo in the simulation is less than 40 since the maximum load is
around 250 users, i.e., about 62.5%.

• constQual: ToL, ToH, TuL, andTuH are set to 30, 8, 8, and 1, respectively. Note that
the thresholds need to decrease as the load increases since it is more “difficult” to
maintain the same level of quality at higher load.

Now we look at the results of these two customization schemes. Figure 5.27 shows the
overall average quality of the two schemes, and Figure 5.28 shows the overall average cost.
When using the constCost customization scheme, we can see that the overall average cost
is kept close to the 0.1 level in both halves of the simulation. Therefore, when compared
with the 35/10 static setting, constCost can achieve better quality in the first half when the
load is low. On the other hand, constQual is able to keep the overall average quality closest
to 0.95 in both halves of the simulation. Therefore, when compared with the 25/6 static
setting, constQual lowers the average cost significantly in the first half. To summarize,
these customization schemes allow the service provider to achieve the goals in the two
target scenarios.
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Figure 5.27: Overall average quality: with customization.

Figure 5.28: Overall average cost: with customization.

5.8 Related work

There have been many previous efforts to add run-time adaptation capabilities to vari-
ous systems. As discussed earlier, most of these efforts have focused on what we call
“parameter-level” adaptation. For example, some earlier work focused on adapting the
communication in a client-server system. The Rover toolkit [80] facilitates the design
of distributed client-server applications by providing mechanisms for dynamically adjust-
ing communication parameters to adapt to network problems. The Quality Object (QuO)
framework [89] provides a Contract Description Language (CDL) for specifying the QoS
contracts between a client and a server, and its runtime system monitors the contracts and
adapts the client-server communication to changing system conditions. Odyssey [100] pro-
vides APIs for applications to obtain resource availability and dynamically adjusting the
fidelity level in response to changes. Puppeteer [33] uses transcoding proxies between a
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client and a server to adapt the communication pattern to changing network characteris-
tics using control APIs exported by the components. The tactic-based remote execution
approach [7] uses “tactics to capture the application-specific knowledge in workload parti-
tioning for remote execution, and it provides the supporting mechanisms such that dynamic
re-partitioning capability can be easily added to a client-server application.

Some other parameter-level approaches aim for more general distributed applications.
For example, the Program Control Language (PCL) framework allows developers to pro-
gram distributed adaptive applications that can dynamically adapt to environment changes
by modifying their run-time parameters such as communication pattern, video compression
scheme, and so on [40]. An application-independent adaptation framework is proposed
in [16] that can automatically determine when adaptation is needed and modify component
control parameters accordingly using a tunability interface exported by the application.
In [108], a framework is proposed to adapt composite services by dynamically adjusting
the fidelity level of each component to optimize a utility function Although the adaptation
also includes choosing suppliers of components, the selection of supplier does not change
the semantics of a component, and the selection is among a small number of choices that
are mapped directly into the utility space, e.g., selecting one of Word and Emacs for text
processing. Therefore, we consider it a parameter-level approach. The SMART frame-
work [10] uses a linear state feedback model to predict changes in environment (e.g., mem-
ory usage) and to modify the system component accordingly to adapt to such changes.
Again, we consider this a parameter-level approach since the selection of the system com-
ponent is focused on selecting implementations that have different performance trade-offs,
e.g., selecting one of two matrix multiplication algorithms. A policy-driven approach for
mobile adaptive systems is proposed in [37]. A policy language derived from Event Calcu-
lus is used to specify when an adaptation should be performed and what specific actions to
perform. The actions are parameter-level adaptations supported by the control interface of
each component.

Dynamic resource allocation is another form of run-time parameter-level adaptation.
For example, in [34], a model is derived to capture the the relation between performance
metrics and resources. A resource allocator can then dynamically change the resource
allocation among different services in response to changing changing performance require-
ments and resource availability. In [128], a utility function is used to specify the preference
for resource allocation. A resource arbiter can then dynamically change the resource alloca-
tion to maximize the utility in a constantly changing environment. Q-RAM [85] addresses
the problem of resource reservation and admission control for multiple resources with the
goal of maximizing a utility function that involves multiple QoS dimensions.

In contrast to these parameter-level efforts, some other studies look at “component-
level” adaptations, i.e., adaptations that require changes in the structure of the target sys-
tem. For example, Panda [115] allows a client-server system to adapt to various network
problems by combining a series of adaptors that can remedy such problems between the
client and the server. The CANS infrastructure [48] supports similar functionalities and
also combines parameter-level adaptations in individual components. These solutions fo-
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cus on a “path model” that adapts the output of a sender to the input of a receiver. In
contrast, our approach targets services that have more general configurations.

Other component-level adaptation studies support more general component-based sys-
tems. For example, a compositional approach is proposed in [121] to support communica-
tion among heterogeneous components by composing a set of connectors that can transform
the data to ensure compatibility. In [103], an architecture-based approach is proposed to
support run-time adaptation by manipulating the architectural model of the target system,
e.g., adding or removing components. An architectural model represents, at an abstract
level, the components and connections in the system, and it provides explicit integrity con-
straints that guide the run-time adaptation. The Rainbow framework [19, 52] also uses the
architecture-based adaptation approach and provides general support for different architec-
tural styles.

Although we adopt the strategy specification approach used in Rainbow, there are sev-
eral major differences between our work and Rainbow. Broadly speaking, Rainbow is an
adaptation framework that can potentially support very general forms of adaptation while
we make specific contributions in the area of local adaptation that addresses performance
concerns. We now discuss the differences in more detail. First, in this thesis we focus on the
performance concern, i.e., we specifically target adaptations that maintain the performance
properties of a service configuration. In contrast, the architecture-based approach in Rain-
bow more generally supports adaptation based on different concerns that can be represented
in an architectural model. Similarly, while we focus on supporting adaptation strategies that
are within a local scope, Rainbow has a global view of the target system because of the use
of an architectural model, and it can support more global adaptation strategies. Secondly,
Rainbow generalizes architecture-based adaptation by enabling system designers to choose
the most appropriate architectural style that provides relevant system properties and analyt-
ical methods for the target system. Therefore, adaptation is based on strategies that leverage
style-specific analytical methods and adaptation operators, and different adaptation needs
can be satisfied by selecting the appropriate style. In our work, we leave it to the provider to
design service-specific adaptation strategies that address the particular run-time problems.
Finally, Rainbow does not explicitly address the customization and coordination issues for
adaptation strategies. As discussed earlier, although customization can be done individually
within each strategy, a centralized customization mechanism can reduce the complexity of
strategy design for providers. In addition, customization may require information about
the global configuration, which may not be available to individual strategies. Moreover, in
many cases, coordination of different adaptation strategies is necessary to avoid conflicting
actions or to ensure the strategies do not work against each other. Therefore, our approach
provides explicit support for customization and coordination.

Some of the previous efforts perform adaptations using strategies that are indepen-
dent of the target system, for example, by learning when and how to perform adapta-
tions (e.g., [16]) or by using type-based composition (e.g., [115, 48]). Other efforts sup-
port service-specific adaptation strategies to some degree. Some use “internalized” stra-
tegies, i.e., the strategies are embedded into the system and/or components, for exam-
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ple, [80, 100, 40, 10]. Others supports “externalized” strategies that are separated from
the adaptation mechanisms, for example, [33, 37, 34, 128, 108, 85, 7, 52]. On the other
hand, as discussed earlier, adaptation strategies can be expressed in different forms. One
possibility is to specify a utility function or a similar high-level objective that can be used
to guide the adaptation. This approach is used in many previous studies, especially the
studies focusing on dynamic resource allocation, for example, [85, 108, 34, 128, 10]. An-
other possibility is to specify an “event-action” rule that dictates when and how to perform
adaptation, for example, [100, 33, 40, 52, 37, 7].

Compared to the previous efforts described above, our approach focus on component-
level adaptation but also support parameter-level adaptation. Our work is built on the ex-
ternalized approach in [52] and adopts the event-action approach for specifying adaptation
strategies. As discussed earlier, this is because the externalized approach reduces the devel-
opment cost, and the event-action approach is more feasible in our context. Moreover, [92]
argues that one necessary condition for self-healing or self-repairing in a distributed sys-
tem is that the system must possess “regularities” that are satisfied by all possible config-
urations. This argument can be used in favor of the event-action approach since, give this
condition, it is natural to define rules that perform adaptive actions when such regularities
are violated.

One main difference between our work and the previous efforts is that the previous ef-
forts did not specifically address the issue of adaptation strategy customization based on
the actual service configuration or environment. Of course, in some previous approaches, it
is possible to implement ad-hoc customization schemes, for example, by embedding custo-
mization logic into every strategy. However, this is more cumbersome than our approach,
which allows explicit specification of customization knowledge in an integrated fashion.
Moreover, if customization logic is implemented in individual strategies, it may not have
the necessary knowledge about the global configuration to perform the customization.

Another major difference between previous work and our effort is in how adaptation
coordination is handled. Some previous efforts address coordination problems that are dif-
ferent from the problem we are addressing. For example, in [40], a single adaptation may
consist of multiple simultaneous actions at different components in the distributed system,
and the study addresses the problem of coordinating these actions to ensure synchroniza-
tion. In [11], the focus is on selecting a common parameter, e.g., the communication pro-
tocol, among multiple components, and each component may have multiple feasible values
for the parameter. Therefore, the coordination problem addressed in the study is how to
select a value for the parameter such that the value is acceptable to all components and also
maximizes a global utility, and the proposed solution is a combination of utility function
and distributed auction. In contrast, our focus is on the coordination problem of detecting
and resolving conflicts between adaptation strategies that can be triggered and executed
independently. In this context, the coordination problem can be handled in different ways
as described below.

One possibility is to design the adaptation framework such that conflicts cannot occur.
As mentioned earlier, two possible conflict avoidance approaches are “monolithic” and “in-
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dependent”. In the monolithic approach, all adaptation decisions are made using a single
monolithic strategy. For example, in Odyssey [100], the resource allocation among con-
current applications is performed centrally. In utility-based resource allocation schemes
such as [85, 108, 34, 128], all resource parameters are controlled by the resource allocator
according to the global utility function. On the other hand, the independent approach par-
titions the target system into independent parts, and each part then adapts independently.
For example, in Odyssey [100], each application adjusts its own fidelity level to adapt to
resource availability changes. In [132], the focus is on the problem of how to translate a
given global utility for a composite system into a set of private utilities for the individual
components of the system so that the collective behavior of all components approximately
optimizes the global utility. The independent approach has also been used to address similar
problems in other areas, for example, policy management for distributed systems [93, 28]
As discussed earlier, either of the two approaches is only applicable in a limited context.

Instead of conflict avoidance, another solution for adaptation coordination is to de-
tect and resolve conflicts at run time. Although such an solution has not been explicitly
studied in the context of adaptation coordination, previous studies have looked at similar
problems such as coordinating the execution of event-condition-action policies [22] and
coordinating update rules in an active database system [76]. Both of these studies adopt
the epoch/priority approach for conflict detection and resolution. As discussed earlier, the
application of the basic epoch/priority approach requires a number of assumptions that are
specific to the contexts targeted by these studies.

5.9 Chapter summary

In this chapter, we have described how we extend the recipe-based self-configuration ar-
chitecture to support run-time local adaptations. We identified three important aspects of
service-specific adaptation knowledge: adaptation strategies, customization, and coordina-
tion. We extended the recipe APIs to allow a service provider to specify service-specific
adaptation strategies that are triggered by constraint violations and tactics that address dif-
ferent problems. The new APIs also support strategy customization based on the actual
global configuration and environment, including strategy selection, dynamic constraint,
and dynamic tactic binding. Finally, for adaptation coordination, we categorize adaptation
conflicts into action-level conflicts, which are detected automatically, and problem-level
conflicts, which are identified by the provider and specified in the recipe. We propose a
first-come, first-serve approach for resolving detected conflicts, and we present a tactic an-
notation scheme that can help identify tactics that potentially work at cross purpose. For
evaluation, we performed simulations using a massively multiplayer online gaming service
scenario. The results show that the coordination mechanisms work as expected and incur
only minor overhead, the recipe-based approach allows providers to easily design service-
specific coordination policies, and the flexibility of the customization mechanisms allows
providers to easily design customization schemes to achieve their service-specific goals.
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Chapter 6

Conclusions and Future Work

Accessing services provided through the Internet has become a necessity for more and more
people, and improving the performance of such services is an important research direction.
As Internet connectivity and user hardware/software capabilities rapidly become more and
more heterogeneous, it has become apparent that traditional statically integrated services
cannot cope with the resulting variations of user requirements, resource availabilities, and
other environment characteristics at both invocation time and run time. Self-configuration
is an emerging approach for addressing such problems. In this dissertation, we have shown
that it is feasible to abstract the service-specific self-configuration knowledge from the
generic self-configuration mechanisms. As a result, self-configuration can be achieved us-
ing a general architecture while maintaining the ability to make use of the service-specific
knowledge. Therefore, our recipe-based self-configuration approach reduces the develop-
ment cost of building self-configuring services and increases the effectiveness of the re-
sulting services. We now summarize our contributions and propose several future research
directions.

6.1 Contributions

• Recipe-based self-configuration architecture.We identified that the key to im-
proving the effectiveness of self-configuration is the use of service-specific knowl-
edge, and the key to reducing the development cost is to provide shared generic self-
configuration mechanisms. Therefore, we proposed a new architecture that abstracts
the service-specific self-configuration knowledge from the lower-level mechanisms.
This recipe-based self-configuration architecture achieves high effectiveness close to
the previous service-specific approach by allowing service providers to express their
service-specific knowledge in service recipes so that the providers can customize both
invocation-time and run-time self-configuration. On the other hand, our architecture
achieves low development cost close to the previous generic approach by providing
shared infrastructures that are required for self-configuration.

149
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• Network-Sensitive Service Discovery infrastructure.We identified that one im-
portant aspect of service-specific self-configuration knowledge is the network perfor-
mance criteria for component selection, and we observed that existing solutions for
component selection operations based on such knowledge are not efficient. There-
fore, we built the Network-Sensitive Service Discovery (NSSD) infrastructure that
integrates the functionalities of traditional service discovery and network-sensitive
server selection. Such an integrated approach allows the caching and aggregation
of service queries and thus reduces the overhead of network-sensitive component
selection operations. Furthermore, to reduce the complexity of global optimization
problems in component selection, NSSD provides the best-n-solutions feature that
allows the synthesizer to approximate global optimization in a reduced search space.

• Synthesizer and recipe representation.In order to abstract the service-specific
knowledge from the lower-level self-configuration mechanisms, we identified two
key parts of self-configuration that are service-specific: the construction of the ab-
stract configuration for a particular request and the objective function for optimizing
the component selection. Therefore, we designed a recipe representation that can be
used by a service provider to write a recipe expressing such service-specific knowl-
edge. We then built the synthesizer that acts as an interface between the knowledge
and the mechanisms, i.e., it interprets the recipe and accesses the lower-level mecha-
nisms to perform self-configuration according to the abstracted knowledge.

• Local adaptation support. We identified three important aspects of service-specific
adaptation knowledge: adaptation strategies, strategy customization, and strategy co-
ordination. Although most previous solutions for run-time adaptation support some
form of adaptation strategies, they do not address the customization and coordina-
tion issues. For customization, we observed that ad-hoc customization of individual
strategies increases the complexity of strategy design, and furthermore, it may not
be feasible if global configuration properties are required. Therefore, our approach
allows providers to specify customization knowledge as part of global configuration.
For coordination, we identified that problem-level conflicts are service-specific and
cannot be detected automatically. Therefore, our solution allows providers to specify
such conflicts in the recipe, and we built the adaptation coordinator that can detect
and resolve conflicts at run time using a first-come, first-serve approach. In this the-
sis, we focused our attention on “local adaptation” that has a limited scope in terms
of the effects of possible adaptation actions.

6.2 Discussion

In this section, we discuss how various factors may affect the effectiveness of our recipe-
based approach.
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• Request-response vs. session-oriented: As mentioned earlier, we target session-
oriented services where each user request is for a user session that will last for a
relatively long time, e.g., on the order of minutes or hours. Because of this property,
we build our architecture to support more heavy-weight self-configuration mecha-
nisms such as global optimization of component selection that could require seconds
to complete, and we also develop mechanisms to support run-time adaptation. How-
ever, for a request-response service where each user request is for an “answer”, i.e.,
a response, from the service, our architecture may be overkill. In particular, since
a user “session” in a request-response service typically lasts a short time, e.g., on
the order of milliseconds or seconds, any self-configuration mechanisms that take
seconds to complete are not practical. Furthermore, because of the short duration,
run-time adaptation mechanisms become unnecessary.

• Network sensitivity: One important feature of our architecture is the ability to opti-
mize the composed service configuration based on network performance metrics. In
fact, handling “network-sensitive” services incurs additional complexity that arises
from the fact that most network metrics involve multiple components, i.e., component
selection based on network metrics is likely a global optimization problem. However,
the extra complexity may not be necessary for all services. For example, if the bot-
tleneck of a computation-intensive service is the computation or storage capacity of
the individual components, the provider of the service may be more concerned about
finding the servers with the most CPU cycles or storage space than optimizing the
latency or bandwidth between the servers. For such services, it may be sufficient
(or even more efficient) to use a traditional resource management framework that
provides the necessary functionality for dynamically allocating resources, matching
available resources with requests, and so on.

• Point-to-point vs. multi-point : As mentioned in earlier chapters, many previous
self-configuration solutions adopt a point-to-point model (path model) where the out-
put of a sender is adapted to the input of a receiver. In this model, the complexity of
finding a service configuration is low since it is limited to finding a series of com-
ponents between two end points, and most of these solutions address small-scale
problems, e.g., only a few hops on the path and only a small number of choices for
each hop. Therefore, such a model lends itself particularly well to the use of the
generic type-based self-configuration approach. In contrast, as discussed earlier, our
architecture aims to support more general multi-point service configurations where
the complexity of finding service configurations may be high. We address the com-
plexity problem by allowing providers to specify the procedure of constructing the
configuration. This enables more sophisticated self-configuring services. However,
it cannot make use of components or construct a configuration not known by the
provider at design time, which is an advantage of the generic type-based approach.
Therefore, when a service has a relatively simple configuration and frequently needs
to make use of previously unknown components, the generic type-based approach
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may be more appropriate.

• Parameter-level vs. component-level: Many previous studies have proposed run-
time adaptation solutions that focus on parameter-level adaptation, i.e., adaptation is
performed by adjusting the run-time parameters of a system. In such cases, the adap-
tation strategies for a service can often be encompassed in a single utility function
that guides the dynamic selection of the parameters. Such an approach also avoids the
potentially complex problem of adaptation coordination. In contrast, our goal is to
support both parameter-level actions and component-level operations such as adding
and replacing a component. Therefore, it is infeasible to capture the adaptation stra-
tegies as a utility function. Consequently, our architecture needs to handle the issues
related to strategy specification and the coordination of different strategies. If a ser-
vice only requires parameter-level adaptation, or it only involves simple component
selection problem that can be elegantly captured in a utility function, then using an
existing parameter-level adaptation framework may be sufficient.

6.3 Future work

In this section, we identify several future research directions.

• Hierarchical self-configuration: In the current design of the recipe-based self-
configuration architecture, the synthesizer is responsible for putting together all com-
ponents needed by a service instance. However, another possible approach is to per-
form self-configuration in a hierarchical fashion, i.e., a component required by the
synthesizer can in fact be an instance of a different service configured by another
synthesizer. For instance, in the video conferencing service example, the synthesizer
can find an ESM component instead of three individual ESM proxies. In this case, the
ESM component will actually be a service instance composed by another synthesizer
using an ESM recipe. One advantage of such a hierarchical approach is that it can
reduce the complexity of the physical mapping problem for a synthesizer since it now
needs to handle a smaller number of components. Since the self-configuration tasks
are distributed among a hierarchy of synthesizers, the scalability should also improve.
However, this hierarchical approach also raises some interesting issues. For exam-
ple, in the current “flat” approach, the synthesizer uses a global objective function
for component selection. If the hierarchical approach is used, how does the top-level
synthesizer “partition” the global objective into sub-objectives for lower-level syn-
thesizers? In addition, the lower-level synthesizers have their own objectives from
the recipes they are using. How does the top-level synthesizer’s sub-objectives in-
teract with the lower-level objectives? These issues need to be addressed before the
hierarchical approach can be realized.

• Resource management for the synthesizer: To perform self-configuration, the syn-
thesizer needs to acquire certain “resources”. For example, after locating the neces-
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sary components for a user request, the synthesizer needs to “reserve” those compo-
nents, or if the components are software modules, the synthesizer needs to find and
reserve generic computation servers to run those modules. Resource reservation is
necessary since the resources (e.g., components and servers) only have limited capac-
ity. In other words, if the synthesizer uses a component in the configuration of a par-
ticular user request, then the component may not be available to any other requests.
Therefore, the resource management problem here is how the synthesizer allocate
the limited resources among the user requests it is handling? There are higher-level
resource management issues as well. For example, if a synthesizer is used by two
service providers (e.g., video conferencing and interactive search), it needs to per-
form self-configuration for two different services using two different recipes. How
does the synthesizer allocate resources among them? Furthermore, when there are
multiple synthesizers competing for the same pool of resources, how should the re-
source management issues be resolved? Such issues become even more interesting
when the hierarchical approach described above is used.

• More general adaptation support: The run-time adaptation support in the current
architecture has a limited scope. One area that requires further study is how factors
unrelated to performance should be considered in adaptation. For example, some
researchers have considered “user distraction” as a metric that should be minimized
when performing adaptation. How can we factor distraction into the current adapta-
tion mechanisms? Another area for further study is how to handle the full spectrum
(from global to local) of adaptation. The current architecture focuses on the two ends
of the spectrum, global configuration and local adaptation. Handling adaptations that
can be anywhere in between will require additional mechanisms, for example, adap-
tation strategies rendered useless by a semi-global adaptation need to be removed. In
the area of adaptation coordination, many issues have yet to be explored. For exam-
ple, how to detect indirect conflicts between adaptations? This will require a model
for the propagation of the effects of adaptations. If the epoch-based approach for
conflict detection and resolution is to be used, what heuristics and mechanisms are
needed to make it work for our purpose? Can we add “preemption” to the first-come,
first-serve approach, i.e., can we make adaptations “preemptable”? This can address
one major problem of the FCFS approach, i.e., a higher-priority adaptation can be
blocked by a lower-priority one started earlier.

• Integration with existing service frameworks: There are many research efforts
that are complementary to our recipe-based self-configuration approach. Integrating
them with our architecture will allow it to provide richer functionality. For example,
as discussed earlier, the generic type-based approach for self-configuration has the
drawback that it cannot make use of service-specific knowledge. However, it has an
advantage over our approach: since the components are put together based on their
input/output types, new types of components that are unknown at design time can
still be used. Therefore, one interesting direction for future work is how to enhance
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our approach with type-based composition? Can the synthesizer switch to type-based
composition when no feasible configurations can be found using the recipe? As an-
other example, the current architecture focuses on using specific components, e.g.,
video transcoder and conferencing gateway, in a service configuration, and we design
mechanisms to handle the discovery, optimization, and other issues for such compo-
nents. Although generic resources such as computation server and storage server can
be handled using the same mechanisms, it may not be very efficient. For example,
properties of such generic resources tend to change very frequently (e.g., available
memory, CPU utilization, etc.). There has been many previous studies that specif-
ically address the discovery and optimization issues for such generic resources, for
example, languages for specifying resource requirements, mechanisms for match-
ing resource requirements to resource providers, and so on. These efforts can be
leveraged to provide better support for generic resources. Other self-configuration
and/or adaptation frameworks are also complementary to our efforts, for example,
parameter-level self-configuration, utility-based resource allocation, tactic-based re-
mote execution, and so on. How to integrate these efforts into our recipe-based ar-
chitecture is another area for further research.
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